Design and R&D Progress of Chinese HCCB TBS Programme

Kaiming FENG^{a*}, Xiaoyu WANG^a, Yongjin FENG^a, Long ZHANG^a, Yanjing CHEN^a, Pinghua WANG^a, Xinghua WU^a, Xingfu YE^a, Fengchao ZHAO^a, Fen Wang^a, Qixiang CAO^a, Yang LIU^a, Hongbin LIAO^a, Qijie WANG^a, Yanlin WANG^a, Xiaoyong WANG^a, Jun WANG^a, Li YANG^a, Yinfen CHEN^a, Guo YU^a, Jie LIU^a, Baoping GONG^a, Bin ZHOU^a, Zhiqiang HU^a, Zhou ZHAO^a, Zaixin LI^a, Guoshu ZHANG^a, Deli LUO^c, Jianli ZHANG^d, Chuanhong PAN^b, Xuru DUAN^a, Min WANG^b, and Chinese HCCB TBM Team

a) Southwestern Institute of Physics, Chengdu, China

b) ITER Chinese Domestic Agency, CNDA, Beijing, China

c) China Academy of Engineering Physics (CAEP), Mianyang, P.R. China

d) Baoji Haibao Special Metal Materials Co. Ltd., Baoji, P.R. China

26th IAEA Fusion Energy Conference, Kyoto, Japan

- Introduction
- Objectives of CN HCCB TBS
- CN HCCB TBS Design Progress
- CN HCCB TBS R&D Progress
- Time Schedule
- Summary

Introduction

- ITER is an unique opportunity to test tritium breeding blanket mock-ups in integrated tokamak operating conditions;
- Helium-cooled ceramic breeder (HCCB) test blanket system is the selected concept for the Chinese ITER TBM program.
- The CN HCCB TBMA has been signed between ITER and CN DA in Feb. 2014. The conceptual design review has been hold in Jul 2014 and approved in Sep 2015.
- The schedule of CN HCCB TBS has been established in 2014 and updated recently in compliance with ITER schedule.
- The detail design and R&D of CN HCCB TBS for preliminary design phase is on-going under the supporting of CN DA.

Introduction

• Objectives of CN HCCB TBS

- CN HCCB TBS Design Progress
- CN HCCB TBS R&D Progress
- Time Schedule
- Summary

General HCCB-TBS Test Objectives

Related R&D Activities for Supporting DEMO-BB

Testing Plan for the CN HCCB TBS

- The objectives of CN HCCB TBS is to test the tritium breeding blanket technology in the Tokamak operation conditions provided by ITER.
- At least four kinds of TBM modules will be tested during ITER different operating phases (H-H, D-D,D-T phases).

Operation Phase	Testing Description	TBM types
H-H	Safety, thermal load of surface, E-M load, disruption	EM-TBM
D-D	Neutron response data, Thermal behaviors	TN-TBM
D-T (Low duty)	Structure behaviours, Nuclear response for D-T neutron, Tritium production, Tritium procedure validation	TN-TBM
D-T (High duty)	Operational behaviours, Heat transfer, Tritium production and management. Overall reliability and operational performance	INT-TBM

Introduction

- Objectives of CN HCCB TBS
- CN HCCB TBS Design Progress
- CN HCCB TBS R&D Progress
- Time Schedule
- Summary

Subsystems and Configuration of HCCB TBS

Southwestern Institute of Physics

SW

5

Updated TBM Module Design

 In order to simplify the manufacturing processes, the design of HCCB TBM was updated based on the fabrication technology R&D and engineering analyses since 2015.

Main design parameters

Parameters	Values
Neutron wall load	0.78 MW/m ²
Surface heat flux	0.3 MW/m ²
Structural material	CLAM/CLF-1 ~1.3ton (<550°C)
Tritium Breeder	Li₄SiO₄ pebble bed (<900ºC)
Neutron Multiplier	Beryllium pebble bed (<650°C)
Coolant	Helium (8MPa) 1.04 kg/s (Normal) FW(300°C/370°C) Breeding zone (370°C/500°C)
Purge gas	Helium with H ₂
TPR	0.061g/FPD

- Reduce the mass of structural material

Updated TBM Module Design

Updated TBM Shield Design

- Based on fabrication technology R&D and engineering analyses, HCCB TBM shield design was further updated:
 - Reduce the total length to increase the interspace with TBM with similar shielding capability
 - Optimize pipe configuration, thickness of shell, supporting structure to simplify the manufacturing processes

Updated HCS Design

- The configuration of HCS was updated considering the actual equipment size and maintenance requirements.
- The statuses and status shifting have been development and the steady state simulation has been performed to verify the design.
- One small helium testing loop has been constructed and started the testing.

New configuration of HCS

The flow chart of HCS

Layout configuration of HCCB TBS

Updated TES/CPS Design

• TES&CPS

- Updated related component parameters for the TES and CPS systems.

- The operation states and shifting plan have been defined.

TES and CPS design

TBM →	НССВ							
Sustame	Operation states							
Systems	Plasma	Baking	Short Term	Test and	Short Term	Tritium	Long Term	Commissioning
¥	Operations	вакіпд	Standby	Conditioning	Maintenance	outgassing	Maintenance	commissioning
	Plasma				Cold waiting,		Abcost Off	
TES	operation,	Hot waiting	Hot waiting	Hot waiting	Vacuumed,	Hot waiting	Absent, OII,	Commissioning
	Hot standby				Regeneration		Sale	
	Plasma			Hotwaiting	Cold waiting,		Abcont Off	
CPS	operation,	Baking	Hot waiting	Baking,	Vacuumed,	Baking	Absent, OII,	Commissioning
	Hot standby			Baking	Regeneration		Sale	
	Plasma							
	operation,				Cold waiting,		Abcent Off	
TAS	Hot	Hot waiting	Hot waiting	Hot waiting	Vacuumed,	Hot waiting	Absent, OII,	Commissioning
	standby,				Hot waiting		sare	
	accountancy							

The flow char of CPS

Integration of Sub-system in AEU

14

Introduction

- Objectives of CN HCCB TBS
- CN HCCB TBS Design Progress

• CN HCCB TBS R&D Progress

- Time Schedule
- Summary

RAFM steel CLF-1 - Fabrication

5 ton CLF-1 ingot (ESR)

Heat treatment

Forging bars

Thickness from 10 to 55mm

Forging of the ingot

high temperature tensile strength 600

- The current TBM design and R&D is based on the CLF-1 developed by SWIP.
- Based on the fabrication technology of 1 ton ingot, 5 ton ingot of CLF-1 has been manufactured and preliminarily tested.
- After the testing, the fabrication procedure will be finalized and the qualification procedure is under discussion with ANB.

RAFM steel CLF-1 - Irradiation

 An irradiation campaign was ongoing by SWIP in the High Flux Engineering Test Reactor (HFETR) in China. The data for the 1 dpa irradiation have been obtained.

Comparison on the Tensile properties

		Yield strength <i>,</i> MPa	Tensile strengt h, MPa	Elongati on,%	Red uctio n of area, %
	Before	685	766	20	72
	irra	688	757	19	72
R. T.	ma.	703	778	20	70
	After irra.	768	815	17	71
		772	828	19	69
		708	796	20	68
	Before	610	626	15	73
300° C	irra.	583	609	14	73
	After irra.	633	660	14	69
		617	643	14	71
		664	681	13	70

• The YS and UTS increased after irradiation.

Power: 125MW Maximum Flux: 6.2×10¹⁴n/cm².s

High flux engineering test reactor

Comparison on the Impact properties

		Energy, J	, mm
R. T. Before irra After irra	Before	182	1.56
	irra	196	1.78
		167	1.54
	After irra	157	1.47
		192	1.68
		196	1.75

• The impact properties have no obviously changed.

RAFM steel CLF-1 - Weldability

 The main potential welding methods for HCCB TBM have been tested. Based on these results, the preliminary fabrication method for HCCB-TBM has been proposed and will be verified.

Hot pressing diffusion welding

	RT tensile pro	Impact test	
	UTS (MPa)	TE (%)	Absorbed energy (J)
Hot press welding	690	26	22
EB welding	635	24	240
HIP welding	656	28	120
Laser welding	647	25	265

HIP welding

Laser welding

TBM Fabrication Technology

Welding and fabrication of component and module of HCCB TBM

- Based on the TBM-set design, the fabrication technology is under studied and testing, such as the vacuum diffusion, HIP, EB, Laser, etc. also including some new technology, such as laser printing.
- The welding method between CLF-1 and SS316L(N)-IG has also been studied.
- After the testing of these above method, the fabrication process of TBM has been proposed. Some components have been fabricated.

18

• The large size mockup will be fabricated and tested later.

Small scale TBM mock-up

Helium Testing Loop

Value		
8MPa		
0.1kg/s		
300-500°C		

- The helium testing loop has been constructed including its I&C system and the initial testing has been performed. The following items have been considered for the next operation phase.
 - Pressure drop for the pebble bed
- Flow distribution and pressure drop for the key components
- High heat flux test for first wall with electrical beam heating

The testing plan is under preparation.

TES/TAS/CPS - Components R&D

- Based on the design and performance requirements, the prototypes of filter, cooler, heater, Ionization chamber and micro-GC have been fabricated and are now under test.
- The functional material testing platform has been constructed, and the materials for hydrogen oxidation and impurity removal have been tested.
- A CPS test loop has been constructed at CAEP.

21

Introduction

Objectives of CN HCCB TBS

- CN HCCB TBS Design Progress
- CN HCCB TBS R&D Progress

• Time Schedule

• Summary

HCCB-TBS Overall Schedule

ITER Commissioning and Operations

CN HCCB TBS Milestones

- Current HCCB TBMA milestones (for EM TBM only) is based on the current ITER construction, operation plan.
- According to the TBS need date provided by ITER, the HCCB-TBS schedule was updated recently in compliance with ITER schedule.

Milestone	New Date
HCCB TBS PD Design Readiness Workshop	2019.3
HCCB TBS PDR	2019.12
HCCB TBS PDR approval	2020.6
HCCB TBS FD Design Readiness Workshop	2021.9
HCCB TBS FDR	2022.6
HCCB TBS FDR approval	2023.1
Amendment HCCB TBMA	2023.7
Contract signature for HCCB TBS	2024.1
Manufacturing process qualification	2024.9
End of Manufacturing(TBS and Ancillary systems)	2029.1
HCCB TBS delivery	2029.6
Pipe forests and Ancillary Equipment Units	2029.6
HCCB TBS acceptance tests start in ITER site	2029.7
Assembly start	AP III (2030)

24

Introduction

Objectives of CN HCCB TBS

- CN HCCB TBS Design Progress
- CN HCCB TBS R&D Progress

• Time Schedule

Summary

- The TBM program is an important part of China fusion development Strategy, for which HCCB concept has been selected as testing objective.
- The HCCB TBMA has been signed between ITER and CN DA. The CDR was approved in 2015. Now it has enter Preliminary Design (PD) phase.
- The design of HCCB TBS is developing in details according to the schedule. R&D on the development of structure material and function materials, fabrication of medium-sized TBM mock-up, construction of the testing loops, are ongoing.
- The R&D and test plan, delivery of CN HCCB TBS are scheduled according to the ITER schedule and progress.
- Chinese TBM programme will be implemented with the cooperation of domestic and international institutions and industries.

Thank you for your attention !

