Summary Slide for Main Achievements of NIF Beryllium Campaign

Andrei N. Simakov, LANL for NIF Be team

IAEA FEC 2016 Conference 17-22 October 2016 Kyoto, Japan

UNCLASSIFIED

Slide 1

Operated by Los Alamos National Security, LLC for NNSA

NIF Experiments Have Demonstrated Be Ablator Advantages, Are Working Towards Their Utilization

- Enhanced Be ablation properties are expected to provide improved control of the capsule stability and implosion symmetry
 - − Strong ablative stabilization → reduced "tent scar"
 - Larger ablation pressure \rightarrow larger hohlraums
- NIF Be experiments started in August of 2014 and have confirmed
 - Enhanced ablation front stability
 - Very good laser-capsule coupling and predictive implosion stability control for 0.8 mm capsules in low-fill 6.72 mm hohlraums, albeit at laser cone fractions ~0.24 (→ suboptimal laser use)
- Upcoming experiments will increase capsule radius to achieve predictable symmetric implosions with optimal cone fractions ~1/3
 Alamos

Top: Enhanced Be ablation front stability

Bottom: Symmetry control of 0.8 mm Be capsule implosions in low-fill 6.72 mm hohlraums

Operated by Los Alamos National Security, LLC for NNSA

AL LABORATORY

UNCLASSIFIED