

Max-Planck Institut für Plasmaphysik

Ibb

Hans-Stephan Bosch for the W7-X Team

Max-Planck-Institut für Plasmaphysik Greifswald

26th IAEA Fusion Energy Conference, Kyoto, Japan, 17.-22.10.2016

- Introduction W7-X
- Commissioning
- Operation

Wendelstein 7-X

- 735 t mass with 435 t cold mass
- 70 superconducting NbTi coils
- 2.5 3 T magnetic induction on axis

- 30 m³ plasma volume
- 265 m² plasma facing components
- 4.5 m height, 16 m diameter

Wendelstein 7-X

Closure of the torus, March 2014

- the commissioning started after the closure of the vessel.
- assembly of in-vessel components, peripheral components and diagnostic systems was continued for another 10 months.
- simultaneous performance of assembly and commission tasks leads
 - to organisational and logistic problems, limited efficency (for both tasks)
 - to additional safety considerations to be taken into account.
- each commissioning step was prepared with
 - safety analysis
 - hazard analyis
 - Operation manual
 - commissioning assurance template (CAT, 100 in total) and WBS
- Local / Integrated commissioning
- Intensive FE-modelling of the commisioning steps was performed, in order to check the behaviour of the device.

H.-S. Bosch, 26th IAEA FEC, Kyoto, Japan, October 17.-22. 2016

The commissioning was divided into six phases:

- i. Vacuum tests of the cryostat
- ii. Cu-coil systems tests
- iii. Cryogenic tests of the cryostat
- iv. Vacuum tests of the plasma vessel
- v. Superconducting magnet coil systems tests
- vi. Preparation for the first plasma

I. First pumping of the cryostat

- the cryostat is formed by the outer and inner vessel and the 254 ports
- free volume is \approx 420 m³ with inner metal surface \approx 1100 m²,
- covered by the thermal shielding
- 5 pumping stations available, for the pump-down 2 pumps were used

Integral commissioning of the cryostat had two goals

 \circ create isolation vacuum in 10000 the cryostat for the first time 1018 mbar measure the mechanical 1000 Cryostat pressure [mbar] 700 mbar behaviour of the cryostat 300 mbar vessel 100 50 mbar 10 20 20 Saturday, 19.07.14 Sunday, 20.07.14

3.5 mbar

Start of the Roots pumps

20

I. Structural integrity of the cryostat

- FE model for cryostat system
- modeling of various load cases, here of the vacuum load

- laser tracker measurements of reference points on outer vessel and ports
- monitoring of strain gauges on the plasma vessel
- monitoring of plasma vessel supports (movements and forces)
- deformation of large rectangular and oval port bellows

III. Cryo supply

extensive preparation of the cryo supply started in fall 2014:

- Leak- and pressure tests of the cryo-piping
- Re-commissioning of the cryo plant
- Cleaning of the piping inside the cryostat by sudden expansion of nitrogen gas
- Purging of piping and filling with helium
- Circulation of helium gas and cleaning with the cold adsorber of cryo plant

 \Rightarrow common cool-down of cryo-plant and W7-X started mid of February 2015

III. Cooling down

- both operation modi were successfully tested (adjustement of circuits, energy balances, automation, liquefaction, ...)
- no problems encountered during the cooling down
- thermal insulation turned out to be better than expected

- HV and Paschen test of the full coil system in December 2014
- HV test of the cold magnet system in March 2015
- within the commissioning process different tasks were performed
 - balancing the quench-detectors
 - checking the safety system of the coils
 - measuring the mechanical behavior of the coil system (stresses, deformations, contact sensors, ...)
 - Adjusting the He-cooling during magnet operation
- current tests started with single coil-circuits, for each of the 7 types of coils (non-planar coils: 12.8 kA, planar coils: 5.0 kA)

IPP

VI. Confirmation of magnetix flux surfaces

Deformation of the sc coils from the coils current ⇒ modification of the iota-profile (extending the plasma volume) this effect was predicted by FE modelling of the coils

December 2015

First plasma (Helium) on December 10, 2015

First plasmas rather short

- 500 kW 1 MW
- limited to 100 kJ (non-absorbed microwave energy)
- 50 100 ms plasma duration

Plasma properties

- 10 ms good ECRH-coupling (X2)
- limited by impurity-radiation
- T_e ~ 1 keV
- n_e ~ 10¹⁹ m⁻³
- ⇒ further cleaning of the plasma vessel walls

Operation phase 1.1

2094

948

- construction of W7-X was laborious,
- but commissioning was very successful.
- the extensive QM and the FE-Modelling and have proven their value.
- the precision of assembly was important and all tolerances were kept.
- the magnetic flux surfaces have been proven to fulfill the expectations.
- the experimental operation started in December 2015 with He-plasmas.
- plasmas were dominated by impurities from the walls; slow but continuous improvement of the plasmas, measured by the length of ECRH-absorption.
- with H-plasmas duration of up to 6 s were achieved, $T_e \approx 10$ keV.
- OP 1.1 was successful with 770 experiments, no technical problems.

Thank you for your attention!

Outlook

In-vessel components for OP 1.2a

- Test Divertor Units (TDU)
- Divertor closures
- Baffle elements
- Graphite tiles
- In-vessel diagnostics

In-vessel components for OP 1.2b

- TDU scaper elements
- Diagnostics

In-vessel components for OP 2

- High-Heat-Flux divertor
- Cryo pumps
- In-vessel diagnostics
- Port protection liners