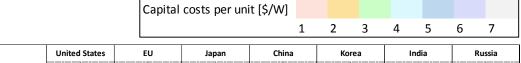

Assessment of Potential and Breakeven Prices of Fusion Power Plants Under

Low-Carbon Development Scenarios


K. Gi, F. Sano, K. Akimoto, Research Institute of Innovative Technology for the Earth (RITE)

Global energy system assessment model: DNE21+

Breakeven prices of fusion power plants

	United States		EU		Japan		China		Korea		India		Russia	
	Pulsed	SS	Pulsed	SS	Pulsed	SS	Pulsed	SS	Pulsed	SS	Pulsed	SS	Pulsed	SS
Default Plant Availability ($f_{availability, pulsed} = 0.55$, $f_{ravailability, ss} = 0.70$)														
Reference														
CP6.0														
CP4.5														
CP3.7														
СР3.0														
Enhanced Plant Availability ($f_{availability, Pulsed} = 0.70, f_{availability, ss} = 0.90$)														
Reference														
CP6.0														
CP4.5														
CP3.7														
СР3.0														

- Breakeven prices (BPs) and potential capacity of fusion power plants under five low-carbon development scenarios were studied by using a global energy system model DNE21+.
- A wide range of breakeven prices of capital costs per unit of 1-8 \$/W in the United States, the EU, Japan, China, Korea, India and Russia were revealed in the different condition of five CO₂ emission pathways and four types of innovativeness of fusion plant technology.
- A prospect of the capital costs less than 5 \$/W and/or enhancement of the plant availability is desired in the DEMO project.
- Fusion can play a significant role in the low-carbon development if it secures the economy, substituting for fission and fossil fuel power plants with carbon dioxide capture and storage (CCS).