The Ion Internal Transport Barrier on HL-2A

D.L. Yu¹, Y. L. Wei¹, L. Liu¹, J.Q. Dong^{1, 2}, K. Ida³, K. Itoh³, A. P. Sun¹, J. Y. Cao¹, Z. B. Shi¹, Z.X. Wang⁴, Y. Xiao², B. S. Yuan¹, H.R. Du⁴, X. X. He¹, W. J. Chen¹, S.-I. Itoh⁵, K.J. Zhao¹, Y. Zhou¹, J. Wang¹, X.Q. Ji¹, W. L. Zhong¹, Y.G. Li¹, J.M. Gao¹, W. Deng¹, Yi Liu¹, Y. Xu¹, L. W. Yan¹, Q. W. Yang¹, X. T. Ding¹, X. R. Duan¹, Yong Liu¹ and HL-2A team

Southwestern Institute of Physics, Chengdu 610041, China
 Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310058, China

3) National Institute for Fusion Science, Toki 509-5292, Japan

4) School of Physics and Optoelectronic, Dalian University of Technology, Dalian 116024, China

5) Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580,

Japan

26th IAEA Fusion Energy Conference, Kyoto, Japan

Southwestern Institute of Physics

- Motivation and the main diagnostics
- iITB characteristics and formation criterion
- Mechanisms of the iITB formation
- Summary

NIP Southwestern Institute of Physics

- Motivation and the main diagnostics
- iITB characteristics and formation criterion
- Mechanisms of the iITB formation
- Summary

WIP Southwestern Institute of Physics

Motivation

- The plasma with internal transport barriers (ITBs) is favorable for the steady state operation in a tokamak power plant
- Discharge with ITB is a promising candidate regime for ITER
- The investigation of formation mechanism of transport barrier is still on going

The CXRS System on HL-2A

- Fast throughput spectrometer (F/2.8)
- Double-slit incidence fiber bundle
- 32/64 channels are available
- T_i & v_t measurements with 250 Hz are available
 D L Yu 2014, RSI 85 11E402
 Y L Wei 2014, RSI85 103503

- Motivation and the main diagnostics
- iITB characteristics and formation criterion
- Mechanisms of the iITB formation
- Summary

WIP Southwestern Institute of Physics

The typical discharge of ITB formation

- The ion temperature gradient becomes steeper while stored plasma energy increases ~15%
- The gradient is steeper when the sawtooth disappears

D. L. Yu 2016, NF56, 056003

ÊĒ

Southwestern Institute of Physics

ITB foot locating at q=1 rational surface

- The ITB formation accompanies with LLM or fishbone
- ITB can be observed both in T_i and v_t channels
- According to ECE and CXRS, the ITB foot locates at q=1 surface

Control the ITB foot with ECRH

Southwestern Institute of Physics

SW

Identification of iITB through R/L_{Ti}

- R/L_{Ti} from 7 shots have been compared
- The R/L_{Ti} values with EPM (long lasting modes and fishbone oscillations) are higher than the others

Criterion of iITB formation is R/L_{Ti}>14

- The T_i (0.5) increases with the R/L_{Ti}, whereas it decreases when R/L_{Ti} is higher than 14
- The criterion for characterizing iITB is whether R/L_{Ti} is larger than 14 or not

x_i as low as neoclassical level in iITB

- The ion thermal diffusivity (by ONETWO code) can be as low as neoclassical level
- The ITBs is more easily formed at the early phase of the NBI heating

R/L_{Ti} dependent on temperature ratio

- The R/L_{Ti} decreases with the temperature ratio $T_e(0)/T_i(0)$
- Typical value of R/L_{Ti} is higher than 14 when the ratio is less than 1

- Motivation and the main diagnostics
- iITB characteristics and formation criterion
- Mechanisms of the iITB formation
- Summary

WIP Southwestern Institute of Physics

Reason of iITB tending to form at beginning of NBI

• Current drive by NBI helps the ITB formation

ÊĒ

SWIP Southwestern Institute of Physics

Toroidal rotation shear vs. ITB formation

EEC

- The ITB is more easily formed at the beginning of NBI heating
- The toroidal rotation term is dominant in E_r
- The flow shear rate $\omega_{E \times B}$ is higher than the ITG growth χ (by HD7 code) inside the maximum $T_i(v_t)$ gradient regions

Shearing rate VS the T_e/T_i and R/L_{Ti}

• Shearing rate decreases with the temperature ratio

ÊĒ

• The maximum R/L_{Ti} increases with $\omega_{E \times B}$

TM degrades confinement, FB suppresses TM

- m/n=2/1 TM can be influenced by FB
- The FB enhances the confinement by suppressing the TM

- Motivation and the main diagnostics
- iITB characteristics and formation criterion
- Mechanisms of the iITB formation
- Summary

NIP Southwestern Institute of Physics

Summary

•The ITB can be developed with very low co-I_p NBI power, and frequently observed at the beginning of the NBI heating •The ITB foot locates at q=1 surface •The criterion of ITB is R/L_{Ti} higher than 14 •E×B shearing rate is higher than the ITG growth rate inside the maximum gradient of T_i/v_t region during the iITB phase

Next step work

- To actively control the ITB
- To compare with the simulations
 Some results coincide with the simulations, for example Th/P3-3 K. Imadera

Thank you for your attention!

ÊĒ

How LLM/FB influences the TM?

• The LLM/FB induces the T_e turbulence suppressing the TM

ÊÊ