26th IAEA Fusion Energy Conference Kyoto, Japan, 17 – 22 October 2016

Kinetics of Relativistic Runaway Electrons (a theory-biased perspective)

Boris Breizman

Institute for Fusion Studies, Austin, TX, USA Pavel Aleynikov

ale leastitut für Disserverbusite Oreifeureld

Max-Planck-Institut für Plasmaphysik, Greifswald, Germany

Work supported by the U.S. DOE Contract No.DEFG02-04ER54742 and by ITER contracts ITER-CT-12-4300000273, ITER/CT/15/4300001178 Thermal quench and primary runaway production.
Runaway avalanche and runaway sustainment.
Damping of runaway current.
Micro-instabilities.
Summary.

Chain of events during plasma disruption

- Rapid cooling of plasma electrons (Thermal Quench) makes the plasma more resistive.
- Loop voltage increases to sustain toroidal current.
- Strong toroidal electric field produces seed runaway electrons.
- Runaways multiply via avalanche mechanism and become a large part of the total current (Current Quench).
- Toroidal current decays in line with dissipation of magnetic energy.

Page 3 of 20

Electron cooling mechanisms 1/2

- Magnetic surface breakup enables electron
 heat losses along stochastic field lines
 RECHESTER, A. B., and ROSENBLUTH, M. N., PRL 40 (1978) 38.
- Magnetic stochasticity can also degrade confinement of runaway electrons
- YOSHINO, R. , TOKUDA, S., Nucl. Fusion **40** (2000) 1293.
- HAUFF, T., and JENKO, F., PoP **16** (2009) 102308.
- PAPP, G., et al., PPCF **54** (2012) 125008.
- ABDULLAEV, S.S., Magnetic Stochasticity in Magnetically Confined Fusion Plasmas, Springer-Verlag, Cham-Heidelberg (2014).

Difficult items to control:

electron current to the wall the level and spectrum of magnetic fluctuations magnetic islands

V.A. Izzo, et al, PPCF 54, 095002 (2012)

Electron cooling mechanisms 2/2

- Impurity influx is controllable experimentally and envisioned as the prevailing disruption mitigation technique.
- Line radiation and bremsstrahlung are expected to govern electron cooling; these two are being analyzed.
- Intrinsic non-uniformity of the impurities during thermal quench provides another powerful cooling mechanism for electrons: ambipolar expansion of the plasma blobs (not yet included in modeling).

Difficult aspects:

proper delivery of impurities (MGI and pellet injection)

HOLLMANN, E., et al. Nucl. Fusion 57 (2017) 016008

Key ingredients in runaway kinetics

- Driving force from the inductive electric field.
- Electron drag (small-angle collisions with free and bound electrons).
- Elastic scattering (collisions with plasma ions and impurity ions).
- Synchrotron radiation (in partnership with high-Z elastic scattering).
- Knock-on collisions.
- Bremsstrahlung.
- **Radial transport.**

Runaway kinetics and separation of time scales

Kinetic equation:

$$\frac{\partial F}{\partial t} + eE\left(\frac{1}{p^2}\frac{\partial}{\partial p}p^2\cos qF - \frac{1}{p\sin q}\frac{\partial}{\partial q}\sin^2 qF\right) = \hat{C}F + \hat{R}F + \hat{S}F$$
Small-angle collisions:

$$\hat{C}F = \frac{mc}{t}\left(\frac{1}{p^2}\frac{\partial}{\partial p}\left(p^2 + m^2c^2\right)F + \frac{(Z_{eff} + 1)}{2\sin q}\frac{mc\sqrt{p^2 + m^2c^2}}{p^3}\frac{\partial}{\partial q}\sin q\frac{\partial}{\partial q}F\right)$$
Synchrotron radiation reaction:

$$\hat{R}F = \frac{mc}{t_{rad}}\left[\frac{1}{m^2c^2p^2}\frac{\partial}{\partial p}p^3\sqrt{m^2c^2 + p^2}\sin^2 qF + \frac{1}{p\sin q}\frac{\partial}{\partial q}\frac{p\cos q\sin^2 q}{\sqrt{m^2c^2 + p^2}}F\right]$$
Knock- on collisions (Møller source): $\hat{S}F$

- Møller source (ŝF) is weaker than electron drag (by Coulomb logarithm). Møller, C., Ann. Phys. (Leipzig) 14, 531 (1932)
- Bulk electron density includes ½ of bound electrons. ROSENBLUTH, M.N., and PUTVINSKI, S.V., Nucl. Fusion **37** (1997) 1355.
- Effective ion charge takes into account bound electron shielding. ZHOGOLEV, V.E., KONOVALOV, S.V., VANT series Nucl. Fusion. **37**, (2014) 71.

Components of seed generation model (TH/P4-2)

□ Maxwellian pre-quench electrons (n₀, T₀).
 □ Impurity atoms delivered instantaneously (n_{cold} > n₀ after ionization).

□ Kinetic description of the hot electrons.

□ Spitzer conductivity of the bulk plasma.

Constant current density during TQ; the electric field evolves accordingly.

 Bulk plasma temperature is determined by: energy release by hot electrons Ohmic heating line radiation SUMMERS, H.P., et al., PPCF 48 (2006) 263.

Seed formation during plasma cooling

Argon densities: 0.5, 0.3, 0.2

Thermal quench scenario:

RE seed current is determined by competition between bulk plasma cooling and hot electron cooling

Page 9 of 20

Pre-avalanche RE current

- □ The RE seed current grows with impurity density up to prompt conversion (a trend opposite to HARVEY, R.W., et al., PoP 7 (2000) 4590).
- □ The RE seed current has a non-monotonic dependence on pre-quench temperature with a maximum at T₀~4keV

Page 10 of 20

Fast avalanche

 \Box Circuit equations for the total current *I* and runaway current I_{re} :

$$\frac{\P I}{\P s} = -(I - I_{re})$$

$$\frac{1}{I_{re}} \frac{\P I_{re}}{\P s} \gg \frac{l_i}{\sqrt{Z + 5 \ln \lfloor I_A}} \frac{(I - I_{re})}{I_A}$$

$$\ln \frac{I_{re}(¥)}{I_A} + \frac{l_i}{\sqrt{Z + 5 \ln \lfloor I_A}} \frac{I_{re}(¥)}{I_A} = \frac{l_i}{\sqrt{Z + 5 \ln \lfloor I_A}} \frac{I(0)}{I_A} + \ln \frac{I_{re}(0)}{I_A}$$

Notations:

 l_i - internal inductance (order of unity quantity)

- s time in the units of the Ohmic decay time
- I_A Alfvén current (17kA)

The runaway current grows exponentially and saturates when it takes large part of the total current.

The final runaway current is insensitive to bulk plasma resistivity.

MARTIN-SOLIS, J.R., LOARTE, A., and LEHNEN, M., PoP **22** (2015) 082503

Slow avalanche

- Seed runaway electrons produce secondary electrons via large-angle (Møller) collisions with the bulk.
- Møller source is weaker than electron drag (by Coulomb logarithm).
- Two-step description of the runaway avalanche:
 - ① Examine sustainment of the runaways in the absence of knock-on collisions
 - ② Use the distribution function of the sustained runaways to predict their multiplication or loss due to knock-on collisions.
- Litems of interest:
 - □ Critical electric field for avalanche onset
 - □ Avalanche growth rate
 - Runaway distribution function

Momentum space attractor (synchrotron losses preclude unlimited acceleration)

Page 13 of 20 PRL **114** (2015) 155001

Distribution function of the sustained electrons

Self-similar electron distribution at the phase space attractor.

Steep growth of the attractor lifetime with the electric field. The threshold field is marked green.

Source of knock-on electrons

The simplified source [ROSENBLUTH and PUTVINSKI (1997)] implies ultra-relativistic primary electrons without angular spread.

The needs to relax these constraints:

- runaway scattering on high-Z impurities
- energy limitation by synchrotron radiation
- moderate energy of primary electrons at high electric field

Exact source:
$$S = n_{cold} c \frac{\sqrt{g_0^2 - 1}}{g_0} \left\langle \mathcal{O} \left[\cos q - \cos q_p \right] \right\rangle \frac{dS}{dD}$$

dS/dD = Møller cross-section

The gyro-averaged δ -function is

$$\left\langle \delta \left[\cos \theta - \cos \theta_p \right] \right\rangle = \frac{1}{\pi} \frac{1}{\sqrt{\left(\frac{p_{\perp} p_{0\perp}}{p p_0} \right)^2 - \left(\frac{p_{\parallel} p_{0\parallel}}{p p_0} - \sqrt{\frac{\gamma - 1}{\gamma + 1}} \sqrt{\frac{\gamma_0 + 1}{\gamma_0 - 1}} \right)^2}}$$

Red curve - shape of the simplified source. Color-coded – exact source for primary electrons with $\gamma_0 \approx 5$ and $\lambda_0 = 0.2$.

ALEYNIKOV, P., et al., Proc. 25th IAEA Fusion Energy Conf, 2014, pp. TH/P3-38.

Avalanche growth rates comparison

Marginal stability model for runaway current decay

- The characteristic time-scale of runaway electron production via avalanche mechanism is much shorter than the current decay timescale.
- □ The local inductive electric field must be close to the avalanche threshold $E_0(n; Z_{eff}; B)$ to maintain runaway current at any flux surface.
- □ Nonlinear "Ohm's law": $j_{\parallel} > 0 \implies E_{\parallel} = E_0; \quad j_{\parallel} = 0 \implies E_{\parallel} < E_0$

D Faraday law:
$$\frac{1}{r} \frac{|\mathbf{q}|}{|\mathbf{q}|} r \frac{|\mathbf{E}_{||}}{|\mathbf{q}|} = \frac{4\rho}{c^2} \frac{|\mathbf{j}_{||}}{|\mathbf{q}|}$$

Current decay is roughly linear in time with

$$t_{decay} = \frac{I_0}{c^2 E_0}$$

Caveat: vertical instability and kink instability may develop on this time-scale (currently under consideration [KONOVALOV, S.V., et al., TH/7-1])

> Nucl. Fusion **54** (2014) 072002 PRL **114** (2015) 155001

Microinstabilities

Microinstabilities can enhance runaway scattering: "Fan" instability observed in early experiments and explained

> ALIKAEV et al., Sov. J. Plasma Phys. (1975) PARAIL and POGUTSE, Nucl. Fusion (1978)

Modes of interest:

- Electron cyclotron waves
- Magnetized plasma waves
- Whistlers [FÜLÖP, SMITH, and POKOL, PoP 16 (2009) 022502]

Reassessment:

Collisional damping, convective damping and instability threshold have been revised substantially [Nucl. Fusion 55 (2015) 043014].

Kinetic drive quantified for ray-tracing calculations.

Maximized growth rate shows existence of instability after TQ for ITER-relevant parameters.

Statistical analysis (COIN code)

Wave transformations:

- Red whistler wave
- Green magnetized plasma wave

Wave trajectories diverge after multiple reflections and mode transformations

This randomness calls for statistical approach:

- 1. Launch many waves at a reference temperature
- 2. Find trajectories with maximum amplification factor
- 3. Scale damping with temperature
- 4. Find minimal temperature for instability to appear.

Fast analysis of several million wave packets determines instability window

Summary

Self-consistent kinetic modeling of primary runaway formation during thermal quench (prompt conversion of the plasma current into runaway current is feasible for heavy injection of impurities).

Kinetic near-threshold theory for runaway sustainment and multiplication in presence of synchrotron losses (enhanced critical electric field found for avalanche onset).

Marginal stability scenario for runaway-dominated current quench (runaway avalanche threshold determines the current decay timescale).

Revised thresholds of runaway-driven micro-instabilities (instability window quantified for ITER-relevant parameters).

Page 20 of 20