Characteristics of Halo Current in the KSTAR Tokamak

J.G. Bak¹, H.S. Kim¹, S.H. Hahn¹, I.S. Choi¹, J. Kim¹, H.S. Kim¹, and KSTAR team

¹National Fusion Research Institute (NFRI), Daejeon, Korea

E-mail contact of main author: jgbak@nfri.re.kr

The characteristics of the thermal/current quench and halo current (HC) during VDEs were investigated in the KSTAR tokamak by using experimental data obtained in the experimental campaigns of 2015 and 2016. There was the linear correlation between the values of - $(dI_p/dt)_{max}$ and I_{p0} (its slope = 178.5 s⁻¹), and the minimum value of τ_{CO} was estimated to be about 5 ms that was also checked by evaluating quench times from the I_p data. The magnitude of γ_Z (mostly, 30 – 100 s⁻¹) was in inverse proportion to the value of τ_{TQ} , but there was no correlation between γ_Z and τ_{CO} . In the parametric dependence of HC, the values of both f and TPF became smaller for higher I_{p0} ($I_{p0} = 0.4 - 1.0$ MA), higher value of $I_{h,tot amx}$ was obtained for higher value of both κ (1.2 $\leq \kappa \leq$ 1.9) and β_p (0.4 $\leq \beta_p \leq$ 1.3). The value of the TPF \times f was lower than 0.58, and the maximum value of f was was up to 45 % of I_{p0} . The upper limit of the HC was able to be estimated as $I_{h,max} = \sim 1.4 I_{p0}/q_{95}$ by using the I_{p0}/q_{95} scaling. In addition, the magnitude of the HC was able to be reduced to ~ 58 % when the amount of D_2 gas puff at the divertor region was higher than 1.0×10^{22} D/s, and the toroidal distribution of the local HC was able to be changed by applying external NMP field (n = 1 and -90 phasing) at the edge region. Finally, the rotating HCs were observed during VDEs and its rotation frequency was 0.6 - 2.0 kHz during only one revolution in the counter-I_p direction during downward VDEs. Interestingly, few rotating HCs in the co- I_p direction (0.8 – 2.5 kHz) were also detected. For the further study on this rotation, the investigation on the toroidal variation of the local HC will be carried out by using fitting procedure as mentioned in Ref. 1.

References.

[1] GERHARDT, S.P., et al., "Dynamics of the disruption halo current toroidal asymmetry in NSTX", Nucl. Fusion **53** (2013) 023005.