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Abstract. Internal kink instabilities exhibiting fishbone like behaviour have been observed in a variety of experi-
ments where a high energy electron population, generated by strong auxiliary heating and/or current drive systems,
was present. The results of global, self-consistent, non-linear hybrid MHD-Gyrokinetic simulations will be pre-
sented. Linear dynamics analysis will enlighten the effect of considering kinetic thermal ion compressibility and
diamagnetic response, and kinetic thermal electrons compressibility, in addition to the energetic electron contri-
bution. Non-linear saturation and energetic electron transport will also be addressed, making extensive use of
Hamiltonian mapping techniques, discussing both centrally peaked and off-axis peaked energetic electron profiles.
Centrally peaked energetic electron profiles are characterized by resonant excitation and non-linear response of
deeply trapped energetic electrons. On the other side, off-axis peaked energetic electron profiles are characterized
by resonant excitation and non-linear response of barely circulating energetic electrons which experience toroidal
precession reversal of their motion.

1. Introduction

The mutual interaction of particle populations, characterized by very disparate kinetic ener-
gies, is of great interest for research on thermonuclear plasmas of fusion relevance, and, in
particular, for the so-called “ignited” plasmas, in which the 3.52 MeV α-particles, released in
deuterium-tritium (D-T) reactions, have to thermalize by Coulomb collisions with the bulk ther-
mal D-T plasma in order to self sustain its temperature. The interplay of fusion α-particles and
magnetohydrodynamics- (MHD), Alfvénic-like modes has been recognized, since long time,
as a crucial issue for the success of next generation,“ignited” devices as, e.g., ITER [1]. In-
deed, the potential enhancement of the radial transport of energetic particles toward the edge
of the plasma device while preventing them to fully thermalize could, in turn, degrade the fu-
sion performance on one side, and damage the plasma facing components on the other. Similar
phenomenology could also take place because of energetic particles accelerated by auxiliary
heating systems, as, e.g., neutral beam (NB) injection and a variety of radio frequency heat-
ing and current drive systems, and, indeed, has been observed in a large selection of present
days auxiliary heated toroidal plasma devices (see, e.g., Refs. [2, 3]). One of the “case stud-
ies” of energetic particle driven MHD-like modes is the “fishbone” mode, originally observed
in the Poloidal Divertor eXperiment (PDX) [4] device, owing its name to the characteristic
fishbone-like shape of the perturbed magnetic field signal evolution. The fishbone is an in-
ternal kink-like instability driven, in PDX, by energetic ions due to neutral beam injection,
which results in anomalous losses of energetic ions themselves. Deeply trapped ions, in pres-
ence of a beam deposition profile peaked near the magnetic axis, were recognized to drive the
mode [4, 5] because of resonant wave-particle interaction at the energetic particle toroidal pre-
cession frequency ω̄d. Fishbone oscillations driven by suprathermal ion population have been
observed, since then, on many tokamak devices [2, 3, 6, 7]. Observations indicate that the mode
propagates poloidally in the ion diamagnetic drift direction, and toroidally parallel to the en-
ergetic particle precession velocity, thus having ω ' ωres ' ω̄dh and ω∗h/ω ' ω∗h/ω̄dh > 0,
consistent with theoretical predictions for unstable modes [5]. Here, ωres is the resonance fre-
quency, the overbar x̄ on the quantity “x” indicates its bounce average, the diamagnetic fre-
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quency is ω∗s = k · v∗s = k · cB×∇ps
nsesB2 ' nq(r)

r
c

nsesB
dps
dr

and the toroidal drift frequency is
ωds = k · vds ' nq(r)

r
cEs

esBR
, with v∗s being the diamagnetic velocity, vds the magnetic drift

velocity, “s” indicating the particle species, k the wave vector, n the toroidal mode number,
Es the energy of the single particle, ns the density, ps the pressure, es the electric charge, r
the minor radius coordinate, B the magnetic field, q the safety factor, and the subscript “h”
refers to energetic (“hot”) particles. It is worth noting that the ratio ω∗h/ω̄dh does not depend
on the sign of the electric charge es: thus, deeply trapped energetic electrons with a density
profile peaked on-axis and of energy similar to that of energetic ions could be expected to drive
a similar fishbone mode, propagating poloidally in the direction of the electron diamagnetic
drift, i.e., opposite to the ion fishbone (although with some more unfavorable conditions [8]).
The first observation of fishbone oscillations driven by energetic electrons (electron fishbones,
or e-fishbones) is reported almost two decades later in DIII-D [9]. In that experiment, strong
MHD activity was observed in presence of neutral beam ion heating, in conjunction with off-
axis electron cyclotron (EC) current drive and heating on high field side (HFS) and negative
central shear equilibria with qmin ≈ 1. The fishbone oscillations were stronger when EC was
applied on the HFS equatorial plane (θres ≈ π, with θres the resonant poloidal angle of the
EC wave absorption location), and decreased while decreasing θres toward θres = π/2. From
the DIII-D experiment the following conclusions were derived: (1) it was shown that mainly
barely trapped energetic electrons with hollow radial density profile were generated slightly
internal to the qmin = 1 surface; (2) the diamagnetic drift velocity of the energetic electrons
(whose sign depends on sign(es)∇ps, with sign(es) the sign of the electric charge) is parallel
to that of the on-axis peaked energetic ions produced by neutral beams; (3) the orbit averaged
toroidal precession velocity (depending on sign(es)Es) of trapped energetic electrons, which
is opposite to the one of the energetic ions for deeply trapped particles, reverses its sign when
considering barely trapped particles [10, 11], thus becoming parallel to that of deeply trapped
energetic ions. As a conclusion, barely trapped energetic electrons with inverted radial den-
sity profile could meet the instability condition ω∗Ee/ω ≈ ω∗Ee/ω̄dEe > 0 and drive a fishbone
instability, in analogy with deeply trapped energetic ions with on-axis peaked radial density
profile (here, the subscript “Ee” stands for “energetic electron”). Later on, other devices ob-
served fishbone oscillations with electron heating only, i.e., electron cyclotron resonant heating
(ECRH) and/or lower hybrid heating (LHH) and current drive (LHCD). E-fishbones have linear
dispersion relation and excitation mechanisms that are similar to those of energetic ion driven
fishbones; moreover, fluctuation induced transport of magnetically trapped resonant particles,
due to precession resonance, is expected to depend on energy and not mass of the energetic
particles involved, because of the bounce averaged dynamic response [8]. E-fishbones are char-
acterized by a very small ratio between the resonant particle orbit width and the characteristic
fishbone length scale (∼ δξr, the rigid radial kink-type displacement). This is also expected
to be the case of ion fishbones in burning plasmas of fusion interest due to the large plasma
current in these devices, while this condition is not realized for the energetic ions in present-
day experiments. These analogies between e-fishbones in present-day devices and fishbones in
burning plasmas provide a practical motivation for investigating these processes, in addition to
the general interest of studying e-fishbones “per se”.

2. Numerical Simulations

In the following sections we will present the results of numerical simulations performed using
the HMGC code [12, 13, 14], which is a hybrid [15] MHD gyrokinetic code originally devel-
oped at the ENEA Frascati laboratories. In HMGC, the thermal (bulk) plasma is described



3 TH/P4-6

by O(ε3) non linear reduced MHD equations [16], which describe circular shifted magnetic
surface equilibria; moreover, the limit of zero bulk plasma pressure is also assumed; the en-
ergetic particles are described by non linear Vlasov equation in the drift-kinetic limit, solved
using particle-in-cell technique, the two components (thermal and energetic particles) being
coupled [15] via the pressure tensor term of the energetic particle species entering in the ex-
tended momentum equation of the bulk plasma. The hybrid scheme allows to consider the
effect of the energetic particles on the electromagnetic fields self-consistently, i.e., they are re-
tained non perturbatively. The original version of HMGC has been recently extended to include
new physics (XHMGC [17]): diamagnetic effects and thermal ion compressibility are retained
in the extended momentum equation of the bulk plasma through the divergence of the thermal
ion pressure tensor, obtained by solving the non linear Vlasov equation for that population, in
order to account for enhanced inertia response (mostly due to trapped particles) [8, 18, 19] and
ion Landau damping [20]. Moreover, XHMGC is able to treat simultaneously, using the kinetic
formalism, up to three independent particle populations, assuming different equilibrium distri-
bution functions (as, e.g., bulk ions and electrons, energetic ions and/or electrons accelerated by
NB, ICRH, ECRH, fusion alphas, etc.). The XHMGC code has been also used to simulate fish-
bone modes driven by energetic electrons [21]. As synthetic diagnostic tool, XHMGC allows
to follow, in a self-consistent simulation, a set of test particles; the phase-space coordinates of
such particles are stored in time, and can be used to compute a variety of single particle phys-
ical quantities as , e.g., the single particle frequencies of the supra-thermal electrons, namely,
the precession and bounce frequencies. The resonances underlying the linear instability can be
clearly identified in this way. Furthermore, the use of energetic particle phase-space diagnostics,
based on Hamiltonian mapping techniques [22, 23] generating kinetic Poincaré plots, allow us
to isolate the physics processes underlying fishbone mode saturation, frequency chirping and
secular (versus diffusive) energetic particle redistribution. The energetic electrons (“Ee”) dis-
tribution function used in the following simulations is:

fEe ∝
nEe(ψ)

TEe(ψ)3/2

4

∆
√
π

exp
[
−
(

cosα−cosα0

∆

)2
]

erf
(

1−cosα0

∆

)
+ erf

(
1+cosα0

∆

)e−E/TEe(ψ) , (1)

where nEe(ψ) and TEe(ψ) are the radial density and temperature profiles, respectively, E is
the single particle energy, α is the pitch angle of the energetic electrons, ψ is the (normalized)
poloidal flux, and the parameters α0 and ∆ are used to model the anisotropy in velocity space of
the distribution function. In the following simulations performed with XHMGC, the contribu-
tions of finite compressibility of thermal ions and thermal electrons will be treated kinetically by
considering isotropic Maxwellian distribution functions with nth,j(ψ), Tth,j(ψ) being the corre-
sponding density and temperature profiles, with j = i, e. We will neglect mode-mode coupling
non linearities, thus considering single n toroidal mode number simulations, while particles non
linearities will be fully retained.

3. Energetic electrons with density profile peaked on-axis

As a first example of e-fishbone we will consider an energetic electron population with on axis
peaked density profile. Similarly to the conventional energetic ion driven fishbones, deeply
trapped energetic particles are expected to drive the mode. The same FTU-like equilibrium
and scenario of Ref. [21] will be considered in this section (see the above mentioned refer-
ence for details). In Ref. [21] it was shown that the e-fishbone mode was destabilized above a
certain threshold energetic electron density, propagating poloidally in the direction of the en-
ergetic electron diamagnetic velocity (which is, for this equilibrium, also parallel to the bulk
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electron diamagnetic velocity), and excited by resonance with deeply trapped energetic elec-
trons (ω = ωres = nω̄dEe). Here, we will reconsider the linear results presented in Ref. [21],
where the kinetic contribution of the energetic electrons and bulk ion was considered, by also
adding the kinetic contribution of bulk electrons.
Linear dynamics. In this section we will investigate the relative importance of different driving
and damping processes accounted for in the model. Following Ref. [17], where the model im-
plemented in XHMGC has been described in detail, let’s consider the perpendicular component
of the extended MHD momentum equation:

ρb[
∂

∂t
+ (

b×∇P0i⊥

ρiωci︸ ︷︷ ︸
diamag., bulk ions

+δvb) · ∇]δvb = − (∇ ·Pe)⊥︸ ︷︷ ︸
bulk electrons

− (∇ ·Pi)⊥︸ ︷︷ ︸
bulk ions

− (∇ ·PEe)⊥︸ ︷︷ ︸
en. electrons

+(
J×B

c
)⊥ ,

(2)
where δvb is the perturbed velocity (∝ δE × B) of the bulk ions, ρi is the bulk ion Larmor
radius, ωci is the ion cyclotron frequency and ρb is the mass density ρb = mini of the bulk
ions. In Eq. (2) the diamagnetic bulk ion contribution, and the different kinetic contributions
coming from the energetic electrons, bulk ions and bulk electrons have been explicitly indicated.
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FIG. 1.: Growth rate (left) and frequency (right) of the e-fishbone mode
vs. nEe0/ni0. The results are shown of considering only the energetic
electron contribution (red circles), and adding, one after the other, the
diamagnetic bulk ion contribution (black triangles), the complete bulk ion
contribution (blue squares) and the bulk electron one (green diamonds).

In the following simula-
tions the toroidal mode
number is n = 1, the
poloidal Fourier compo-
nents retained are m =
1, ..., 6, normalized resis-
tivity S−1 = 3 × 105

and viscosity ντA0/a
2 =

3 × 10−8 have been con-
sidered to ensure numeri-
cal stability (here S is the
Lundquist number S ≡
4πa2/(ηc2τA0), τA0 =
R0/vA0 being the on axis
Alfvén time, η the resistivity, ωA0 ≡ τ−1

A0 the on axis Alfvén frequency, and a is the minor
radius). In figure 1. the results of a scan in which the strength of the energetic electrons driv-
ing term (∇ · PEe)⊥ (which is ∝ nEe0/ni0) is varied are presented, showing the dependence
of the growth rate γ and the frequency ω of the electron fishbone mode on the strength of the
drive. Several curves are shown in figure 1., corresponding to switching on, one after the other,
the contributions highlighted in Eq. (2). First, the divergence of the energetic electron pressure
tensor (∇ ·PEe)⊥, then the diamagnetic bulk ion term (b×∇P0i⊥)/(ρiωci) and, subsequently,
the divergence of the thermal ion pressure tensor (∇ · Pi)⊥, which account for the thermal ion
Landau damping and generalized inertia, retaining consistently the actual dynamic response of
trapped and circulating thermal ions (see also section 2.2 and appendix A of Ref. [8]). Finally,
the divergence of the thermal electron pressure tensor (∇ · Pe)⊥ is also included (bulk elec-
trons with the same radial density and temperature profiles of thermal ions, with ne0 = ni0

and Te0 = 7 keV are considered). The contribution of energetic electrons drives the mode,
which has a clear internal kink characteristic with a dominant m = 1 component localized, in
radius, approximately inside the qmin surface rqmin

/a ≈ 0.35; the poloidal structure rotates in
counter clock wise direction, which corresponds to a mode propagating in the (bulk and ener-
getic) electron diamagnetic velocity direction resulting in a negative real frequency. Referring
to the results shown in figure 1., we observe that the growth rate increases almost linearly with
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the strength of the drive, ∝ nEe0/ni0, and the frequency (in absolute value) slightly decreases.
When considering also the diamagnetic bulk ion term, very little variation is observed, both in
growth rate and frequency: indeed, the absolute value of this term, evaluated at its maximum
radial position (r/a ≈ 0.35) is much less (by a factor ≈ 30) than the absolute value of the
frequency of the mode. When adding the term (∇ ·Pi)⊥, on the contrary, the growth rate of the
mode is notably reduced, showing as the effect of considering the thermal ion Landau damp-
ing and enhanced inertia increases the threshold in nEe0/ni0 required to destabilize the mode;
also the absolute value of the frequency of the mode increases. Finally, when adding the term
(∇ · Pe)⊥ which accounts for the bulk electrons, an increase of the growth rate is observed,
which diminishes its importance as nEe0/ni0 is increased.
Non linear dynamics. The saturation of the e-fishbone driven by energetic electrons with den-
sity profile peaked on-axis is characterized by a pronounced downward (in absolute value)
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FIG. 2.: Saturation amplitude of
ϕsat 1,1 vs. γL/ω0 for the peaked on-
axis energetic electron density profile.

frequency chirping, and evident phase locking, as already
discussed in Ref. [21]. As a consequence, large radial out-
ward transport of deeply trapped resonant particles is ob-
served, in the region were the linear eigenfunction of the
internal kink mode is localized. In figure 2. the satura-
tion amplitude of the m,n = 1, 1 Fourier component of
the electrostatic potential ϕsat 1,1 as the strength of the en-
ergetic particle linear drive γL varies, is shown (here ω0 is
the linear frequency). From the simulations we can infer
that |ϕsat 1,1| ∝ (γL/|ω0|)λ, with λ ≈ 2 for γL/|ω0| . 0.15,
and λ . 1 for γL/|ω0| > 0.15. These results compare fa-
vorably, for weak drive, with the findings of Refs. [24],
whereas, for sufficiently strong drive, are in fair agreement with that given in Ref. [25]
(|δξr/rs| ∼ |γL/ω0|), noting that |δξr||ω0| ∼ vδE×B,r ∼ |ϕ1,1|/rs.

4. Energetic electrons with density profile peaked off-axis

In this section the first global hybrid MHD-Gyrokinetic simulations of e-fishbones driven by
energetic particles with density profile peaked off-axis [26] will be presented. This kind of
equilibria is closely related to the experimental configuration in which e-fishbones have been
observed in current devices. In these experiments, high field side (HFS) off-axis heating is
applied close to the qmin flux surface in the equatorial plane, using ECRH; thus, an inverted
(positive) gradient of the energetic electron density profile is generated in the radial region of
the discharge which is internal to the qmin flux surface and in which the internal kink can de-
velop. Moreover, because of the HFS deposition, a selective heating on barely trapped/barely
circulating particles will be obtained [9]. Recalling the stability condition, ω∗Ee/ω > 0 [5],
and noting that ω∗Ee depends on the sign of the radial gradient of the energetic electron pres-
sure profile, instability can occur only by resonance with energetic electrons characterized by
precession reversal; i.e., barely trapped/barely circulating energetic particles [10, 11]. The
equilibrium considered here has the same bulk density and temperature profiles and plasma
parameters of the peaked on-axis one [21], except for the inverse aspect ratio, ε = 0.1, and
the safety factor profile q, which also in this case is slightly reversed with q0 ≈ 1.3, but
with a qmin much closer to unity (∆q ≡ 1 − qmin = 0.0002) at the surface rqmin

/a ≈ 0.33
and qa ≈ 5.3 (see figure 3. left). Note that qmin ≈ 1 has been used in order to minimize
the continuum damping and facilitate the occurrence of the energetic electron driven fish-
bone [8, 27]. Moreover, safety factor profiles with a reversed shear is known to enhance the
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reversal of precessional drift [10, 11, 28]. The profiles of temperatures and densities are shown
in figure 3. right, the on-axis energetic electron temperature being TEe0 = 50 keV. The width
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FIG. 3.: Radial profile of the safety factor q vs. r (left) and normalized
profiles of ni(ψ), Ti(ψ), nEe(ψ), TEe(ψ) vs. the flux function ψ (right).

∆ of the energetic elec-
trons distribution function
in the velocity space is
∆ = 0.5, whereas cosα0 =
0 as for the energetic elec-
tron density profile peaked
on-axis, see Eq. (1). The
choice of ∆ = 0.5 is
such to ensure the pres-
ence in the energetic elec-
trons distribution function
of a sufficient fraction of barely trapped/circulating particles. Moreover, the choice of a shaped
energetic electron temperature profile, which strongly decreases outside the q ≈ 1 surface, has
the beneficial effect of inhibiting the growth of modes with dominant poloidal mode numbers
higher than unity, which can be driven unstable by deeply trapped energetic electrons outside
the q = 1 surface, where the energetic electron density gradient becomes negative.
Linear dynamics. The equilibrium described above is unstable above the threshold nEe0/ni0 ≈
0.007, showing an almost linear dependence on nEe0 and with a real frequency ω0/ωA0 ≈ 0.04
and very weakly dependent on nEe0. The radial structure of the poloidal Fourier components
is dominated by the m,n = 1, 1 component, which is localized in the region q . qmin, show-
ing the characteristic shape of the internal kink radial displacement. The structure of the mode
in the poloidal plane rotates in time in the clock wise direction, i.e., opposite to the direction
observed in the peaked on-axis energetic particle radial profile (see the previous section), which
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FIG. 4.: Power exchange between energetic electrons and wave, for
nEe0/ni0 = 0.0095. Contribution from the full population in the radial
shell 0.33 . r/a . 0.41 (left), and only trapped particles (right), same
radial shell; black lines refer to the boundary between trapped/untrapped
particles, whereas solid red curve refers to the boundary between barely
circulating and well circulating ones (for r/a . 0.41). Here û is the is
the parallel velocity normalized to the on-axis Ee thermal velocity and
M̂ is the magnetic moment M normalized to TEe0/ωce0.

corresponds to a mode
propagating in the direc-
tion of the diamagnetic
velocity of the energetic
electrons (which is paral-
lel, for a peaked off-axis
energetic electrons density
profile, to the direction
of the bulk ion diamag-
netic velocity). More-
over, the frequency of the
mode is quite low, as ex-
pected for equilibria with
low values of ∆q (see,
e.g., Ref. [27]). From the
power exchange between
the energetic electrons and wave, as shown in figure 4., it is possible to infer which fraction
of energetic particles is driving the mode. In figure 4. (left) the power exchange in the radial
shell 0.33 . r/a . 0.41 is shown, with the curves approximating the trapped/untrapped bound-
ary (solid black) and the barely/well circulating boundary (solid red) superimposed. Here, we
follow the definition given in Ref. [8] for the barely circulating particles. Indeed, the maximum
power exchange occurs for particles in the region of velocity space belonging to that of barely
circulating ones (in particular the counter-circulating ones, red pattern), with some minor con-
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tributions coming from the well circulating particles, both co- and counter-circulating (outside
the solid red curve, green pattern); trapped particles, on the contrary, give a damping contribu-
tion (light blue to dark blue patterns) to the mode, as expected (see figure 4., (right) where only
the power exchange due to trapped particles is shown in order to enhance the relative size of
their contribution). The Hamiltonian mapping technique [22, 23] has been applied to a set of
test particles defined by the C = C0,M = M0 values corresponding to the region where the
power exchange between energetic electrons and the wave is maximum in linear phase, i. e., for
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FIG. 5.: Radial dependence of the
resonant frequency of the counter-
passing barely circulating test par-
ticles (solid red curve) compared
with the mode frequency ω0 (dashed
black line), for nEe0/ni0 = 0.0095,
and the test particle power ex-
change, (blue dot-dashed curve).

counter-passing barely circulating energetic particles at
r/a ≈ 0.36, û ≈ −0.73, M̂ ≈ 1.55 (see figure 4. left), with
a frequency of the mode ω/ωA0 ≈ 0.04 (here, the quantity
C ≡ ω0Pφ − nE, with Pφ being the canonical toroidal an-
gular momentum, is a constant of the (perturbed) motion,
provided that the perturbed field is characterized by a single
toroidal mode number n and a constant frequency). In fig-
ure 5. the radial dependence of the resonant frequency of the
circulating test particles ωres = nω̄d + [`+ (nq −m)σ]ωb,
(here, ωb is the transit frequency) with l = 0, m,n = 1, 1
and σ = −1 (counter-passing particles) is compared with
the observed frequency of the mode ω0; also the radial pro-
file of the power exchange between the test particles and the
wave is presented, showing how the maximum power ex-
change corresponds closely to the radii where the test parti-
cles are in resonance with the wave. In this case, the reso-
nant condition is satisfied at two radial locations (“double resonance”), as a consequence of the
(q − 1) term in the resonant condition for circulating particles.
Non linear dynamics. In figure 6. kinetic Poincaré plots are shown, for the test particles be-
longing to the subset (C0,M0) as described in the previous section, with the test particles col-
ored according to their initial Pφ value: red color for the particles with P̂φ < P̂φ, res1 ≈ 125

(corresponding to r/a . rres1/a ≈ 0.35, see figure 5.), blue color for particles with P̂φ, res1 .
P̂φ . P̂φ, res2 ≈ 162 (i.e., rres1/a . r/a . rres2/a ≈ 0.39), and yellow color for particles with
P̂φ > P̂φ, res2 (i.e., r/a & rres2/a). While entering the fully non linear phase (tωA0 & 670, see

FIG. 6.: Kinetic Poincaré plots for the case of nEe0/ni0 = 0.0095, in the plane (Pφ,Θ), with Θ the
wave-particle phase. Test particles are colored according to their initial Pφ values. The arrows in the
first plot indicate the direction of the particle drift along Θ above, in between, and below the resonant
layers Pφ, res ≈ 7.

figure 6., third frame from left), we note that the two island structures tend to insinuate oneself
into the other, having a Pφ extension (or, equivalently, a radial extension) of the order of the
distance between the two resonance layers |Pφ, res2−Pφ, res1|. As the test particles are displaced
outside the resonant layer (toward r < rres1, or r > rres2), where the characteristic resonant
frequency changes rapidly with radius (see figure 5.), even changing its sign and, thus, not
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satisfying any more the instability condition ω∗Ee/ω > 0, the mode has no “convenience” in
adjusting its frequency to that of the linearly resonant particles. Indeed, little variation of the
frequency during the saturation phase is observed, and the saturation of this simulation can be
ascribed to “resonance detuning” (see, e.g., Refs. [23, 25, 29, 30]). In figure 7. the scaling of
the saturation amplitude of the electrostatic potential vs. the ratio of the linear growth rate to

10-5

0.0001

0.001

0.01

0.1 1

ϕ
sat 1,1

γ
L
/ω

0

ϕ
sat 1,1

~ (γ
L
/ω

0
)3

ϕ
sat 1,1

~ (γ
L
/ω

0
)1.5

FIG. 7.: Saturation amplitude of
ϕsat 1,1 vs. γL/ω0 for the peaked
off-axis Ee density profile.

the frequency of the mode γL/ω0 is shown, in a scan in which
the energetic particle density is varied: a stronger scaling,
ϕsat 1,1 ≈ (γL/ω0)3 is observed for values of γL/ω0 . 0.3,
whereas for larger γL/ω0 the scaling approaches ϕsat 1,1 ≈
(γL/ω0)3/2. It can be shown that these simulation results
compare favorably with the analytic findings obtained in the
case of weak energetic particle drive, when the ωres radial
profile has a local maximum at r = rs, ωres(rs) ≡ ωres0: in
this case, the scaling for the saturated displacement |δξr0| ∼
γ3

L|ω0|−3/2|∆ω|−3/2|2ω0/ω
′′
res0|1/2 is obtained, when noting

that, in the case of |∆ω| ≡ |ωres0 − ω0| > γL (correspond-
ing to the low γ/ω values in figure 7.) that scaling gives
|ϕ1,1 sat| ∝ |δξr0||ω0|rs ∼ γ3

L, whereas for |∆ω| ∼ γL one gets |ϕ1,1 sat| ∝ |δξr0||ω0|rs ∼ γ
3/2
L .
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