Poster TH/P4-6: Linear and nonlinear dynamics of electron fishbones

G. Vlad¹, V. Fusco¹, S. Briguglio¹, C. Di Troia¹, G. Fogaccia¹, F. Zonca^{1,2}, X. Wang³

¹ENEA, Dipartimento FSN, C. R. Frascati, via E. Fermi 45, 00044 Frascati (Roma), Italy
²IFTS and Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
³Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, Germany

Numerical simulations of electron fishbone using the hybrid MHD-Gyrokinetic code XHMGC
XHMGC: Reduced O(ε³) MHD (bulk) + Gyrokinetic contribution from energetic electrons (Ee); also compressibility effects of thermal ions (to properly retain Landau damping and generalized inertia) and thermal electrons are retained kinetically. Two cases considered:

- •Radial density profile of energetic electrons peaked on-axis:
 - e-fishbone is observed above threshold in Ee density $n_{\rm Ee}$, and driven by trapped Ee at toroidal precession frequency: $\omega_{\rm res} = n\bar{\omega}_{\rm d}$;
 - the mode rotates in the energetic (and bulk) electron diamagnetic velocity direction;
 - non linear dynamics: frequency chirping, phase locking, radial transport of Ee up to $q_{\min}^{0.01}$ radial position.
 - Electrostatic potential (ϕ) saturation amplitude scaling in agreement with analytical findings: $\phi_{sat 1,1} \sim (\gamma_L/\omega_0)^2$; $\phi_{sat 1,1} \sim (\gamma_L/\omega_0)$
- •Radial density profile of energetic electrons peaked off-axis:
 - e-fishbone is observed above threshold in n_{Ee} , and driven by barely circulating Ee at frequency (ω_{b} is the transit frequency): $\omega_{\text{res}} = n\overline{\omega}_{\text{d}} (n\overline{q} m)\omega_{\text{b}}$;
 - the mode rotates in the Ee diamagnetic velocity direction (corresponding to the one of the bulk ions);
 - non linear dynamics: double resonance, local flattening of the radial density profile of the Ee at the double resonance radial locations.
 - Electrostatic potential saturation amplitude scaling: $\varphi_{sat 1,1} \sim (\gamma_L / \omega_0)^3$; $\varphi_{sat 1,1} \sim (\gamma_L / \omega_0)^{3/2}$

 γ_{I}/ω_{0}

10

10

 10^{-5}

