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Inter-ELM, attached power deposition profile 

T.Eich et al. PRL 107, (2011) 

ASDEX Upgrade 
Wetted area ITER : <1m2 

Total surfaces : 680 m2 

The Problem of Exhaust: Heat Flux 
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R.Dux, Habilitation (2004) 

The Problem of Exhaust: Erosion 

ASDEX Upgrade 
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The Problem of Exhaust: G|| vs. G┴ 
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A key question for ITER & DEMO: 

 

How are heat and particle fluxes distributed over the various plasma facing 

components?  

 
In the SOL of a tokamak, this is strongly affected by the competition between parallel 

conduction and perpendicular convection. 
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Shoulder formation 

B. LaBombard, PoP ,  (2001) O. E. Garcia et al, JNM,  (2007) D.L. Rudakov, NF,  (2005) 

LCFS LCFS LCFS 

 

      C-mod                DIIID      TCV 

 

A well known experimental fact in tokamaks: 

 

In L-mode, SOL density profiles flatten over a certain density threshold. 

 

An increase of Gr associated to a filament transition has been proposed as the 

explanation in the literature. 
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Filaments and Shoulder 

3 / 11 

J.R. Myra et al., PoP, (2006) 

 

D. Carralero et 

al., PRL, (2015) 
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Sheath  

Limited 

Filaments and Shoulder 
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J.R. Myra et al., PoP, (2006) 

 

D. Carralero et 

al., PRL, (2015) 

 

ln ~ 10 cm 
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      Inertial  

Filaments and Shoulder 
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J.R. Myra et al., PoP, (2006) 

 

D. Carralero et 

al., PRL, (2015) 

 

ln > 30 cm 
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      Inertial  

Sheath  

Limited 

Filaments and Shoulder 
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D. Carralero et 

al., PRL, (2015) 

 

 

Ldiv scaling of the shoulder formation has been 

demonstrated on the COMPASS-AUG-JET ITER 

Stepladder 
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Evolution of particle transport 

The filament transition has clear effects on filamentary transport: 
  

 Packing fraction, ffil and amplitude of fluctuations nfil/nback substantially increased 
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Evolution of particle transport 

The filament transition has clear effects on filamentary transport: 
  

 Packing fraction, ffil and amplitude of fluctuations nfil/nback substantially increased 
 

 Gr across the separatrix is increased by a factor 3-4 
 

 Simmilar results reported from JET (Guillemaut PSI 2016) 
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Thermal evolution of the SOL 

D. Carralero et al, EPS, (2015) 

Electrons and ions show very different behaviour  through the transition: 
  

 Te,fil ~ 1.2 Te,back, Te roughly constant across the SOL. 
 

 Ti,fil > Ti,back for Ldiv < 1. Slow radial decay, lTi ~ 40 mm.  
  

 Ti,fil ~ Ti,back ~ 25 eV for high Ldiv > 1. Fast radial decay, lTi ~ 10 mm.  
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Evolution of heat transport 

IR camera 

D. Carralero et al, in preparation,  (2016) 

Heat transport is not affected by the transition 
 

 qr,fil near the wall are simmilar. Agreement with JET (Guillemaut, PSI 2016) 
 

 A maximum in qr,fil is reached around the transition.  
 

 Good agreement with IR measurements of the q|| at the manipulator. 
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EMC3-EIRENE Simulations 

Ldiv > 1 

Outer midplane 

region 

Ldiv < 1 Ldiv > 1 

tfil 

tni 
tei 

ti|| 

EMC3-EIRENE code is used to simulate Ldiv > 1 and 

Ldiv < 1 scenarios 
 

      No thermalization mechanism can reduce Ti 

 as observed in the experiment.  
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EMC3-EIRENE code is used to simulate Ldiv > 1 and 

Ldiv < 1 scenarios 
 

      No thermalization mechanism can reduce Ti 

 as observed in the experiment.  
 

 An ionization front builds in front of the 

 limiter shadow in the Ldiv > 1 case. 
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EMC3-EIRENE Simulations 

Ldiv > 1 

Outer midplane 

region 

L
im

it
e
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Ldiv > 1 

Ldiv < 1 
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ExB Analyzer experiments 

  

ExB analyzer experiments are consistent with RFA measurements :  
 

 Ldiv < 1  Monoenergetic distribution with a positive tail, consistent  with Ti,back 

 and Ti,fil.  
 

 Ldiv > 1  Two-energies distribution with cold ions around the F.C. Ti,fil 

 not necessarily greater than Ti,back. 
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Looking ahead: H-mode 

L-mode 

values 

D. Carralero et al, PSI,  (2016) 
  

Equivalent experiments have analyzed the shoulder formation on inter-ELM H-mode plasma: 
 

 A simmilar shoulder has been observed.  
 

 An equivalent filament transition takes place for Ldiv > 1 
 

 Ldiv > 1 is a necessary but not sufficient condition. A minimum level of D fueling is 

 also required. This is consistent with L-mode experiments in TCV [N. Vianello, this 

 conference, EX/P8-26]. 
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Looking ahead: DEMO 

ITER 

DEMO 

JET 

COMPASS 

lq,i 
n 

Ti 

Si 

R-RSep 

 

 

Ldiv > 1      Shoulder formation 
 

li ~ Rw-RSep        lTi << Rw-Rsep 
 

lq,i << Rw-RSep         High divertor load 
 

Ti,wall ~ 10-20 eV     Low wall sputtering 
 

  

AUG 

  

Several scenarios can be proposed for DEMO: 

 

Standard  (Extrapolation of current results): 

 

 

 lTi ~ 10 mm, ln ~ 40 mm;   
 

 1/lq,i ~ 1/lTi + 1/ln ~10 mm 
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Looking ahead: DEMO 

 

Insufficient nn in the SOL 
 

li >> Rw-RSep        lTi ~ Rw-Rsep 
 

lq,i << Rw-RSep         High divertor load 
 

Ti,wall >> 10-20 eV      High wall supttering 

 

lq,i 

n 

Ti 

Si 

R-RSep 

  

Several scenarios can be proposed for DEMO: 

 

Worst case (No shoulder formation): 

 

 

 lTi ~ 40 mm, ln ~ 10 mm;   
 

 1/lq,i ~ 1/lTi + 1/ln ~10 mm 
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lq,i 
n 

Ti Si 

R-RSep 
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Looking ahead: DEMO 

 

 

Ldiv > 1      Shoulder formation 
 

li < Rw-RSep        lTi < Rw-RSep 
 

lq,i ~ Rw-RSep         Low divertor load 
 

Ti,wall ~ 10-20 eV      Low wall supttering 

L
im

it
e
r 

  

Several scenarios can be proposed for DEMO: 

 

Best case (independent shoulder formation/ion 

cooling, widened near-SOL): 

 

 lTi ~ 40 mm, ln ~ 40 mm;   
 

 1/lq,i ~ 1/lTi + 1/ln ~40 mm 
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Summary and Conclusions 
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L-mode experiments on AUG, JET and COMPASS have shown the relation between a 

filament transition and the shoulder formation. This process is triggered by the Ldiv > 1 

thresshold. 
 

The transition increases Gperp by a factor 3 after the transition, while qperp remains roughly 

constant due to the drop in Ti. 
 

Simulations indicate that ion cooling is not the result of thermalization, but of the 

ionization of cold, recycled neutrals in front of the limiter. This is consistent with the 

observation of a cold ion population for Ldiv > 1.  
 

H-mode experiments indicate that  a shoulder can form also between ELMs.  

Ldiv > 1  is a necessary condition, but sufficient D fueling level is also required.  
  

 

 

 

The shoulder is probably the result of a feedback loop between increased Gperp, wall 

recycling and ionization of reflected neutrals, leading to ever increased transport.  
 

lTe and lTi are decoupled, which could lead to enhanced lq under certain conditions in 

DEMO. Also, there is a risk of high Ti D
+ ions arriving to the first wall. 



D. Carralero et al. Kyoto, 19th October 2016 Kyoto, 19th October 2016 

 

 

 

Additional Slides 
 

 
 

 

 



D. Carralero et al. Kyoto, 19th October 2016 Kyoto, 19th October 2016 9 / 11 

A mechanism for shoulder formation 
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C. Guillemaut, et al., PSI Rome, (2016) 
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Evolution of particle transport 

D. Carralero et al, in preparation,  (2016) 
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Evolution of heat transport 

D. Carralero et al, in preparation,  (2016) 

Validated by IR and JET 
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Implications on Transport: q|| 
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Total q||
MEM can be calculated 

and compared to IR 

measurements: 
IR camera 
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EMC3-EIRENE Simulations 

Ldiv < 1 
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EMC3-EIRENE Simulations 

Ldiv > 1 
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EMC3-EIRENE Simulations 

Low density High density 
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ExB Analyzer 

Time resolution determined by DAQ system (2 MHz) 
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Probe head designed to measure ion energy distribution in real time. 

Collaboration between AUG and COMPASS teams. 



D. Carralero et al. Kyoto, 19th October 2016 Kyoto, 19th October 2016 

ExB analyzer 

F.C. Ionization 

Energy (5 eV) 

~20 eV Thermal 

Distribution 
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M. Komm, et al., 40th EPS, (2013) 

Slit Position 

D. Carralero at al., 21st PSI, (2014) 
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H-mode experiments 
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Series of Ldiv sweeps with the same magnetic configuration (LSND Edge optimized) and 

parameters (BT = 2.5 T, IP = 800 kA, q95 = 4.85) as L-mode.  

 

Enough Pheat to access H-mode, but avoid damage to the manipulator. Ldiv > 1, is 

achieved using N seeding and/or large D fueling. 
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H-mode: Filament transition 

L-mode 

values 
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Perpendicular filament size transitions are 

observed for different Nedge values at L-mode 

and H-mode. However, both happen around 

Ldiv = 1, in agreement with the SL-IN regime 

transition model.  

 

Individual discharges show limited data. 

However, there is general correlation 

between db and ln, far . 
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H-mode experiments: Scenarios 

Shot Scenario PECH  

(MW) 

PNBI 

(MW) 

Drate t=3.5 s 

(10
21

 s
-1

) 

Nrate t=4.5 s 

(10
21

 s
-1

) 

Drate max 

(10
21

 s
-1

) 

Nrate max 

(10
21

 s
-1

) 

Te,div min  

(eV) 

31974 (○)  

Low N, Low D 

1.3 - 1.3 2.8 1.3 3.4 1 

31977 (□) 1.9 - 1.3 2.8 1.3 3.8 0 

33055 (○)  

High N, Low D 

1.3 1.7 6 1.8 6 8 1.5 

33057 (□) 1.3 1.7 8.2 1.8 8.2 8 3 

33056 (○) High D, no N 1.3 1.7 6.3 - 24.5 - 10 

33058 (○) 

 

High D,  High N 

1.3 1.7 6.3 2 15.4 8 5 

33059 (□) 1.3 1.7 6.3 4 24 4 5 

33475 (◊) 1.4 1.7 6.2 5 24.4 5 7.5 

33478 (∆) 1.4 2.4 7 9.2 24.4 9.2 1.5 
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To achieve different levels of Ldiv, and disentagle the contributions of Drate and Nrate, 

4 different scenarios are defined, based on Pheat and the relative amplitude of D 

fueling and N seeding. 

 

To quantify the degree of shoulder formation, ln,far is defined in the far SOL. 

 

Some scenarios develop a clear shoulder, some others do not. 
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H-mode experiments: ELM synchronization 

Te,div log (Ne,div) log (Ldiv) 

r = 1.04 

r = 1.02 

r = 1 
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During H-mode phase, ELM ejection causes a major, 

intermittent perturbation of SOL conditions. 

 

The beginning of the pre-ELM phase is considered to be a 

good approximation of inter-ELM conditions 

  


