

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programe 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Recent progress towards a quantitative description of filamentary SOL transport

D. Carralero¹, M. Komm², M. Siccinio¹, S. A. Artene^{1,3}, F. D'Isa¹, J. Adamek², L. Aho-Mantila⁴, G. Birkenmeier^{1,3}, M. Brix⁵, G. Fuchert^{1,6}, M. Groth⁷, T. Lunt¹, P. Manz^{1,3}, J. Madsen⁸, S. Marsen^{5,6}, H. W. Müller^{1,9}, B. Sieglin¹, U. Stroth¹, H. J. Sun¹, N. Vianello^{10,11}, M. Wischmeier¹, E. Wolfrum¹, ASDEX Upgrade Team¹, COMPASS Team², JET Contributors¹² and the EUROfusion MST team¹³.

¹Max-Planck-Institut für Plasmaphysik, Garching, Germany. ²Institute of Plasma Physics AS CR, Prague, Czech Republic. ³Physik-Department E28, Technische Universität München, Garching, Germany. ⁴VTT Technical Research Center of Finland, Helsinki, Finland. ⁵EUROfusion Consortium, JET, Culham Science Centre, Abingdon,OX14 3DB, UK, ⁶Max-Planck-Institut für Plasmaphysik, Greifswald, Germany. ⁷Aalto University, Espoo, Finland. ⁸The Technical University of Denmark, Department of Physics, DK-2800 Kgs. Lyngby, Denmark, ⁹Institute of Materials Chemistry and Research, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria. ¹⁰Consorzio RFX, Associazione Euratom-ENEA sulla fusione, C.so Stati Uniti 4,I-35127 Padova, Italy. ¹¹Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Lausanne, Switzerland. ¹²See the author list of "Overview of the JET results in support to ITER" by X. Litaudon et al. to be published in Nuclear Fusion Special issue: overview and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October) ¹³See http://www.euro-fusionscipub.org/mst1

26th International Atomic Energy Agency Fusion Energy Conference, Kyoto, Japan October 19th, 2016

The Problem of Exhaust: Erosion

A key question for ITER & DEMO:

How are heat and particle fluxes distributed over the various plasma facing components?

In the SOL of a tokamak, this is strongly affected by the competition between **parallel** conduction and perpendicular convection.

Shoulder formation

A well known experimental fact in tokamaks:

In L-mode, SOL density profiles flatten over a certain density threshold.

An increase of Γ_r associated to a **filament transition** has been proposed as the explanation in the literature.

EUROfusion

EUROfusion

EUROfusion

EUROfusion

Evolution of particle transport

The filament transition has clear effects on filamentary transport:

Packing fraction, f_{fil} and amplitude of fluctuations n_{fil}/n_{back} substantially increased

Evolution of particle transport

The filament transition has clear effects on filamentary transport:

- Packing fraction, f_{fil} and amplitude of fluctuations n_{fil}/n_{back} substantially increased
- Γ_r across the separatrix is increased by a factor 3-4
- Simmilar results reported from JET (Guillemaut PSI 2016)

Thermal evolution of the SOL

Electrons and ions show very different behaviour through the transition:

- $T_{e,fil} \sim 1.2 T_{e,back}$, T_e roughly constant across the SOL.
- ► $T_{i,fil} > T_{i,back}$ for $Λ_{div} < 1$. Slow radial decay, $λ_{Ti} \sim 40$ mm.
- T_{i,fil} ~ T_{i,back} ~ 25 eV for high Λ_{div} > 1. Fast radial decay, λ_{Ti} ~ 10 mm.

Evolution of heat transport

Heat transport is not affected by the transition

- q_{r,fil} near the wall are simmilar. Agreement with JET (Guillemaut, PSI 2016)
- A maximum in $q_{r,fil}$ is reached around the transition.
- Good agreement with IR measurements of the q_{\parallel} at the manipulator.

EMC3-EIRENE code is used to simulate Λ_{div} > 1 and Λ_{div} < 1 scenarios

- No thermalization mechanism can reduce T_i as observed in the experiment.
- An ionization front builds in front of the limiter shadow in the $\Lambda_{div} > 1$ case.

ExB Analyzer experiments

ExB analyzer experiments are consistent with RFA measurements :

- $\Lambda_{div} < 1 \rightarrow$ Monoenergetic distribution with a positive tail, consistent with $T_{i,back}$ and $T_{i,fil}$.
- ► Λ_{div} > 1 → Two-energies distribution with cold ions around the F.C. $T_{i,fil}$ not necessarily greater than $T_{i,back}$.

Looking ahead: H-mode

Equivalent experiments have analyzed the shoulder formation on inter-ELM H-mode plasma:

- A simmilar shoulder has been observed.
- An equivalent filament transition takes place for $\Lambda_{div} > 1$
- A_{div} > 1 is a necessary but not sufficient condition. A minimum level of D fueling is also required. This is consistent with L-mode experiments in TCV [N. Vianello, this conference, EX/P8-26].

Looking ahead: DEMO

Several scenarios can be proposed for DEMO: **Standard** (Extrapolation of current results):

> $\lambda_{Ti} \sim 10$ mm, $\lambda_n \sim 40$ mm; $1/\lambda_{q,i} \sim 1/\lambda_{Ti} + 1/\lambda_n \sim 10$ mm

Looking ahead: DEMO

Several scenarios can be proposed for DEMO:

Worst case (No shoulder formation):

 $\lambda_{Ti} \sim 40$ mm, $\lambda_n \sim 10$ mm; $1/\lambda_{q,i} \sim 1/\lambda_{Ti} + 1/\lambda_n \sim 10$ mm

Looking ahead: DEMO

EUROfusion

Several scenarios can be proposed for DEMO:

Best case (independent shoulder formation/ion cooling, widened near-SOL):

$$\lambda_{Ti} \sim 40 \text{ mm}, \lambda_n \sim 40 \text{ mm};$$

 $1/\lambda_{q,i} \sim 1/\lambda_{Ti} + 1/\lambda_n \sim 40 \text{ mm}$

L-mode experiments on AUG, JET and COMPASS have shown the relation between a filament transition and the shoulder formation. This process is triggered by the $\Lambda_{div} > 1$ thresshold.

The transition increases Γ_{perp} by a factor 3 after the transition, while q_{perp} remains roughly constant due to the drop in T_i .

Simulations indicate that ion cooling is not the result of thermalization, but of the ionization of cold, recycled neutrals in front of the limiter. This is consistent with the observation of a cold ion population for $\Lambda_{div} > 1$.

H-mode experiments indicate that a shoulder can form also between ELMs. $\Lambda_{div} > 1$ is a necessary condition, but sufficient D fueling level is also required.

The shoulder is probably the result of a feedback loop between increased Γ_{perp} , wall recycling and ionization of reflected neutrals, leading to ever increased transport.

 λ_{Te} and λ_{Ti} are decoupled, which could lead to enhanced λ_{q} under certain conditions in DEMO. Also, there is a risk of high T_i D⁺ ions arriving to the first wall.

Additional Slides

Evolution of particle transport

Evolution of heat transport

Validated by IR and JET

Implications on Transport: q_{II}

Total q_{\parallel}^{MEM} can be calculated and compared to IR measurements:

$$q_{\parallel}^{MEM} = q_{\parallel}^{fil} f_{fil} + q_{\parallel}^{back} (1 - f_{fil})$$

D. Carralero et al.

Kyoto, 19th October 2016

D. Carralero et al.

Kyoto, 19th October 2016

ExB Analyzer

Probe head designed to measure ion energy distribution in real time.

Collaboration between AUG and COMPASS teams.

Time resolution determined by DAQ system (2 MHz)

ExB analyzer

H-mode experiments

Series of Λ_{div} sweeps with the same magnetic configuration (LSND Edge optimized) and parameters ($B_T = 2.5 T$, $I_P = 800 kA$, $q_{95} = 4.85$) as L-mode.

Enough P_{heat} to access H-mode, but avoid damage to the manipulator. $\Lambda_{div} > 1$, is achieved using N seeding and/or large D fueling.

D. Carralero et al.

Kyoto, 19th October 2016

H-mode: Filament transition

Perpendicular filament size transitions are observed for different N_{edge} values at L-mode and H-mode. However, both happen around $\Lambda_{div} = 1$, in agreement with the SL-IN regime transition model.

Individual discharges show limited data. However, there is general correlation between δ_b and $\lambda_{n, far}$.

H-mode experiments: Scenarios

To achieve different levels of Λ_{div} , and disentagle the contributions of D_{rate} and N_{rate} , 4 different scenarios are defined, based on P_{heat} and the relative amplitude of D fueling and N seeding.

To quantify the degree of shoulder formation, $\lambda_{n,far}$ is defined in the far SOL.

Some scenarios develop a clear shoulder, some others do not.

H-mode experiments: ELM synchronization EUROfusion

