

IAEA-FEC 2016

Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER

<u>C.S. Chang</u>¹, S. Ku¹, R. Maingi¹, A. Loarte², V. Parail³, M. Romanelli³, F. Köchl⁴,

and the FES Theory/Simulation Milestone experimental members:

J.-W. Ahn⁵ and T. Gray⁵, J. Hughes⁶, B. LaBombard⁶, T. Leonard⁷, M. Makowski⁸, J. Terry⁶

¹PPPL, ²ITER, ³Culham, ⁴Atominstitu, ⁵ORNL, ⁶MIT, ⁷GA, ⁸LLNL

Outline

- Introduction
- Validation on DIII-D, C-Mod and NSTX (US Milestone)
 - Attached divertor regime to study the minimal heat-flux width
 - Measure heat-flux footprint at entrance to Debye Sheath
 - Then, map to outboard midplane to obtain λ_{q}
 - NSTX and DIII-D are in the drift-dominant λ_q regime
 - C-Mod at cross-over from drift to turbulent λ_{q}
- Prediction for ITER: blobby turbulence dominated
 - − $\lambda_q \approx 5.6 \text{mm} >> 0.63 \text{ B}_{\text{pol}}^{-1.19}$
- A simple heuristic explanation
- Conclusion and discussion
- + Most of the funding provided by US DOE [DE-AC02-09CH11466, DE-FC02-99ER54512, DE-FC02-04ER54698]. Computational resources provided by OLCF [DE-AC05-00OR22725] and NERSC [DE-AC02-05CH11231].
- + First Author acknowledges helpful discussions with R. Goldston.

Introduction

- Neoclassical, turbulence, and neutral particle physics are **all** important
- Neoclassical dominant models, by XGC0 ['10 US JRT] and Goldston, gave

 $\lambda_q \propto 1/B_p^{\gamma}$, $\gamma \sim 1$

- Appears to be working for the presentday tokamaks. But, high B_p cases?
- Will this be true in ITER? Predict using XGC1 with electrostatic blobby turbulence
- XGC1 validation?
- Edge plasma is in non-equilibrium kinetic state: non-Maxwellian, non-diffusive
 - Requires a full-f kinetic ion & electron simulation for high-fidelity predictability

→ Extreme scale computing: We use 90% Titan (~300K cores + 19K GPUs, spending 10M core hours/day) for 3 days for 1 ITER case

5D Total-f XGC Family Codes

Code	GK, DK	Solver Dimension	3D		X-point	MC neutrals recycling
XGC1 hybrid (E&M)	GK ions hybrid electrons	3D (r, θ, ζ) Turbulence			Yes	Built-in
XGC1 kinetic (CAAR*, NESAP**)	GK ions, DK or GK electrons	3D (r, θ, ζ) Turbulence			Yes	Built-in
			Blobs from XGC1: S. Ku, TH/P6-16 Neutrals on turb.: Stotler, TH/P6-7			
XGCa (NESAP**)	GK ions, DK electrons	2D (r, θ) GK Neoclassical & Kinegtic transport modeling	RM	Ρ	Yes	Built-in
			SOL phys: Churchill, TH/P6-10 Edge boostrap: Hager, TH/P2-27			
XGC0	DK ions & electrons	1D (r) DK Neoclassical & Kinetic transport modeling	RM	Ρ	Yes	DEGAS2

*CAAR program at OLCF gives one postdoc support to XGC for GPU optimization *NESAP program at NERSC gives one postdoc support to XGC for Vectorization.

Ability for "blobby" edge turbulence + orbit dynamics is a pre-requisite for heat-flux width study

2013-2014 INCITE, using 90% (16,384+ nodes~25pF) maximal heterogeneous Titan

- Relevant region for the λ_q study: $0.98{\lesssim}\Psi_N{\lesssim}1.02$
- Attached plasma
- For a minimal 1stprinciples based study, a GK simulation should have
 - electrostatic blobs with kinetic electrons
 [D'Ippolito et al., (2011)]
 - neoclassical orbit dynamics
 - ExB dynamics
 - E_{\parallel} solution
 - neutral recycling
 - nonlinear e&I collisions across magnetic separatrix

Blobs from XGC1: S. Ku, THP-6/16

Simulation by S. Ku, Visualization by D. Pugmire

Experimental validation cases studied by XGC1

B-field, first wall, plasma profiles and the heat source are imported from eqdsk files.

Shot	Time (ms)	$B_{T}(T)$	$I_{P}(MA)$	$B_{pol,OM}(T)$	
NSTX 132368	360	0.4	0.7	0.20	
DIII-D 144977	3103	2.1	1.0	0.30	
DIII-D 144981	3175	2.1	1.5	0.42	
C-Mod 1100223026	1091	5.4	0.5	0.50	
C-Mod 1100223012	1149	5.4	0.8	0.67	
C-Mod 1100223023	1236	5.4	0.9	0.81	

Successful validation of the XGC1 heat-flux widths λ_{α} against all three US tokamak data

Example time behavior: C-Mod, 0.9MA We execute the simulation until λ_q ~saturates.

Saturation of λ_q (left) and turbulence intensity ($\delta n/n$)² (right). Turbulence intensity is plotted at $\Psi_N \approx 0.99$ where most of the blobs are born.

XGC1 prediction:

λ_{q} dominated by warm ions in DIII-D and NSTX plasmas.

Breakdown of heat-flux footprint into ion and electron components on DIII-D, 1.5MA

DIII-D #144981, I_P=1.5MA

- The heat-load spreading by electrons (blobby spread) is ~2X narrower than that by ions (neoclassical V_{d,magnetic})
- Radial blob size ~5mm (see insert)
- $T_i > T_e$ in scrape-off
- Ions (electrons) gain (lose) kinetic energy in the pre-sheath potential, elevating the ion effect.
- Neutral particle effect is only ~10%

XGC1: In high current (0.9MA) C-Mod, electrons dominate the heat-flux magnitude.

Electron width (blobby spread) ~ion width lons: Neoclasscial + Blobs, blobs able to spread warm ions.

Prediction for ITER

- The same code that reproduces three US tokamak experimental results predicts $\lambda_{a} \approx 5.6$ mm, instead of <1mm, using a model edge profile
 - But, λ_q is not very sensitive to details of the edge profile.
- ITER λ_q is blob-dominant \rightarrow Indication of a hidden size parameter

When will the blob effect be significant for λ_{α} ?

A new heuristic argument, using ion magnetic drift and δExB mixing

 $[\rho_i \text{ and } \rho_{iPOL} \text{ are at outboard midplane using } T_{i,sep}]$

- Blob size $\Delta_{blob} \approx edge meso scale \approx (L_n \rho_i)^{1/2} \approx (0.05 a \rho_i)^{1/2}$
- Radial ambipoar spread by blobs $\lambda_q^{Blob} \approx (\Delta_{blob} / 2)(T_{e,sep} / T_{i,sep})$

→
$$\Delta_{blob}$$
 ≈1.0 mm for 0.8-0.9MA C-Mod, $T_{i,\Psi=0.99}=T_{e,\Psi=0.99}=75eV$, and ≈ 5.0 mm for ITER, $T_{i,\Psi=0.99}=T_{e,\Psi=0.99}=0.8keV$

- Ion-drift spread $\lambda_{q,HD}$ (Goldston)~(2a/R) $\rho_{iPOL} \sim \lambda_q^{Eich14} = 0.63 B_{pol}^{-1.19}$
- $\lambda_q = Max(\lambda_q^{Eich14}, \lambda_q^{Blob})$ yields a good projection from C-Mod to ITER
- JET is the closest tokamak to ITER and can be an excellent validation bed for a quantitative scaling formula if a higher Bp operation is possible.
- Small C-Mod at higher Bp and fixed T_{i,sep} can also be helpful.

Different arguments on turbulent spreading of λ_q in [J. Myra et al., PoP 22, 042516 (2015)], and in references therein.

"□" from λ_q=Max(λ_q^{Eich14}, λ_q^{Blob}) recovers Eich14 (≈ Goldston), JET high B_p, and all the XGC1-predicted data points including ITER.

Conclusion and discussion

- Prediction from gyrokinetic XGC1 simulations on the 3 US tokamaks have been validated against the experimental scaling $\lambda_q \propto 1/B_P^{1.19}$.
- For DIII-D and NSTX, heat-flux width is dominated by the ion magnetic drift physics → Similar to Goldston scale, but by warm ions
- For C-Mod (small size) that has high B_p and small magnetic drift, λ_q is at cross-over between magnetic-drift and blobby spreads.
- The same code that reproduces the experimental results on three US tokamaks shows ~ $\lambda_q \approx 5.6$ mm for ITER (large size): blob dominated

 \rightarrow Much easier operation of ITER

- It appears that there is a size scaling missing in the existing formula.
 λ_q=Max[λ_q^{Eich14}, λ_q^{Blob}] gives an adequate projection from C-Mod to ITER (and JET experiment)
- JET at higher B_P could shed brighter light on the hidden size scaling parameter.
- More computing time could nail this down.

Backup slides

XGC1 can study divertor heat-flux at unprecedented detail.

- Ion magnetic-drift loss from warm pedestal: $\lambda_{NEO} \approx 2(a/R) \rho_{iPOL}^{w}$ (extruded • part from separatrix) ~2(a/R) ρ_{iPOI} (at separatrix): Basis for Goldston model
- Blobby turbulent ion spread also comes into play: Checked by electrons. •

In a core plasma, *f* evolves slowly, ≥100ms

For this argument, let's use the drift kinetic equation $\partial f/\partial t + (\mathbf{v}_{\parallel} + \mathbf{v}_{d}) \cdot \nabla f + (e/m)E_{\parallel} v_{\parallel} \partial f/\partial w = C(f, f) + Sources/Sinks$ where *w* is the particle kinetic energy.

In a near-thermal equilibrium, we can take the "transport ordering" (= diffusive ordering):

 $\partial f/\partial t = O(\delta^2)$, S=O(δ^2), with $\delta <<1$

• Let $f=f_0+\delta f$, with $\delta f/f_0=O(\delta)$, $\delta <<1$, $v_d/v_{||} = O(\delta)$, $E_{||}/m = O(\delta \text{ or } \delta^2)$

 $\begin{array}{ll} O(\delta^0): & v_{||} \cdot \nabla f_0 = C(f_0, f_0) \rightarrow f_0 = f_M : \text{H-theorem} \rightarrow \text{fluid background} \\ O(\delta^1): & \partial \delta f / \partial t + v_{||} \cdot \nabla \delta f + v_d \cdot \nabla f_0 + (e/m) E_{||} v_{||} \partial f_0 / \partial w = C(\delta f) \end{array}$

- ♦ Perturbative kinetic theories then yield transport coefficients = $O(\delta^2)$
- ♦ In this case, fluid transport equations ($f_o \rightarrow n, T$) can be used with the kinetically evaluated or ad hoc closures
- → GK simulation is cheaper per physics time, but δf equilbrates on a slow time scale $O(\delta^1 \omega_{bi}) \sim ms$. And, a meaningful time evolution of f_0 in V_T frame can only be obtained in a long "transport-time" scale $O(\delta^2 \omega_{bi})$. V_T evolves on an even slower time scale.

In edge plasma, f evolves fast, ~0.1ms

- Ion radial orbit excursion width ~ pedestal width & scrape-off layer width
- Orbit loss from ψ_N <1 and parallel particle loss to divertor

All terms can be large: ~ either $O(\omega_{bi})$ or $O(v_C)$

- $\mathbf{v}_{||} \cdot \nabla f \sim \mathbf{v}_{d} \cdot \nabla f \sim C(f, f) \sim eE_{||}v_{||}/m \partial f/\partial w \sim O(\omega_{bi}) \sim 0.05 \text{ ms in DIII-D edge}$
- *f* equilibrates very fast: $\partial f/\partial t + (\mathbf{v}_{||} + \mathbf{v}_{d}) \cdot \nabla f(e/m) + E_{||}v_{||}\partial f/\partial w = C(f,f) + S.$

Fast-evolving nonthermal, non-diffusive kinetic system:

- Expensive per physics time \rightarrow ideal for extreme scale computing.
- However, a short time simulation (~0.1ms) can yield equilibrium physics.

Poloidal potential variation in the scrape-off layer is also calculated in XGC1 for self-consistent heat-flux physics.

Notice strong pre-sheath in front of the divertor plates, which plays an important role in energy exchange between ions and electrons.

A model DIII-D H-mode plasma

Example heat flux footprint: DIII-D 144981, 1.5MA:

Some have better and some (e.g., NSTX data) have worse agreement with experimental data than shown.

Heat-flux footprint mapped back to outside midplane for DIII-D #144981. The Eich formula yields an excellent fit, with $\lambda_{a}^{XGC1} \approx 1.8$ mm.

Heat-flux footprint comparison between XGC1 (divided by 1.3) and experiment (moved inward by 3mm) on DIII-D discharge #144981.

20

Disagreement in the private flux region with experiments exists on C-Mod, too, at high B_P, but not at lower B_P. However, the C-Mod IR data in private flux region was not reliable (LaBombard).

Even with these disagreements with experiments in some cases, λ_q (XGC1) fits the overall scaling curve better than the experimental IR results do.

C-Mod, 1100223023, 0.9MA, showing a bigger spread of midplane IR footprint into the private flux region. Lower B_p C-Mod cases do not show this.

C-Mod, 1100223026, 0.5MA, does not show a wider spread of midplane IR footprint into the private flux region than what XGC1 shows.

2-point model check in XGC1: Not conclusive yet.

profile at outboard midplane from the 0.9MA C-Mode simulation using XGC1.

DIII-D simulation using XGC1.

For those who are interested in Eich's S-value

- The Eich spread parameter from XGC1 varies widely
 - $0.35 \le S/\lambda_q \le 0.94$ for DIII-D and C-Mod
 - Why does λ_q agree so well with experiments while S does not?
- For ITER, $S/\lambda_q = 0.375$