26th IAEA Fusion Energy Conference, Oct. 17-22, 2016, Kyoto, Japan

Overview of the KSTAR Research in Support of ITER and DEMO

October 17th, 2016

Yeong-Kook Oh¹

On behalf of KSTAR TEAM and Research Collaborators

¹National Fusion Research Institute (NFRI), Daejeon, Korea

We appreciate all the research collaborators for their contribution to KSTAR program

Fully non inductive high beta ($\beta_P > 3$) discharge and physics validation of sawtooth and turbulence

High β_P steady-state (fully non-inductive) discharge and extension to 70s

- **D** Physics validation of $q_0 \ge 1.0$ in MHD quiescent time after the sawtooth crash
 - 30 yrs ago, at Kyoto IAEA, it was reported that $q_0 \cong 0.75 \pm 0.03$ (TEXTOR and TETP)
 - In 2016, KSTAR validates q₀≥1.0

MSE measured $q_0 \cong 1.0 \pm 0.03$ but uncertainty from E_r and κ makes q_0 value uncertain

Nonlinear interaction btw ELM & turbulent eddies induced by RMP

OUTLINE

□ <u>Introduction</u>

- Research directions
- Unique research tools on KSTAR and role for the test bed for ITER and beyond

Research highlights of KSTAR

- Extension of H-mode and high performance discharges into long pulse and steady-state
- Reliable ELM crash free operation and analysis
- Exploring confinement and stability issues using KSTAR unique research tools

Future plan & summary

Research directions and key parameters in KSTAR

□ Research directions of KSTAR

- Extend the reference H-mode and high performance discharge into long-pulse utilizing SC magnets
- Explore confinement and stability issues using the KSTAR uniqueness
- Exploit new stable high-beta and advanced plasma operation regime for K-DEMO

□ Key parameters of KSTAR, ITER & K-DEMO

Daramaters	KSTAR	ITER	K-DEMO
T alameters	(achieved)	(Baseline)	(Option II)
Major radius, R ₀ [m]	1.8	6.2	6.8
Minor radius, a [m]	0.5	2.0	2.1
Elongation, ĸ	2.0 (1.8)	1.7	1.8
Triangularity, δ	0.8	0.33	0.63
Plasma shape	DN, SN	SN	DN (SN)
Plasma current, I _P [MA]	2.0 (1.0)	15	> 12
Toroidal field, B ₀ [T]	3.5	5.3	7.4
H-mode duration [sec]	300 (70)	400	SS
β _N	5.0 (4.3)	~ 2.0	~ 4.2
f _{bs}			~ 0.6
Superconductor	Nb₃Sn, NbTi	Nb ₃ Sn, NbTi	Nb ₃ Sn, NbTi
Heating /CD [MW]	~ 28 (10)	~ 73	160
PFC	C, W	W	W
Fusion power, P _{th} [GW]		~0.5	~ 2.1

KSTAR

KSTAR has unique research tools as the test bed for ITER and **K-DEMO**

Lowest intrinsic error field (δ B/B0 ~ 1x10⁻⁵) and low magnetic ripple (~0.05%)

- Lower L-H transition threshold power
- High beta operation accessible without error field correction Y. In (NFRI) NF2015

ITER relevant In-vessel control coils (IVCC) for ELM control

- Three poloidal rows (top / middle / bottom) same as ITER
- \circ Stable ELM crash suppression/mitigation at n=1, 2 and mixed Y.M. Jeon (NFRI) PRL2012

Advanced 2D/3D imaging diagnostics

- 2D/3D ECEI, MIR, BES, etc
- New physics from the measurement of turbulence and MHD instabilities

G.S. Yun (POSTECH) PRL2011

n=1, +90 phase top mid bot

n=2, even			
+	-	+	-
-	+	Ð	+
+	-	+	-

KSTAR

Status of heating & current driving systems in KSTAR

Diagnostics systems developed through collaboration

KSTAR

OUTLINE

Introduction

- Research directions
- Unique research tools on KSTAR and role for the test bed for ITER and beyond

Research highlights of KSTAR

- Extension of H-mode and high performance discharges into long pulse and steady-state
- Reliable ELM crash free operation and analysis
- Exploring confinement and stability issues using KSTAR unique research tools

Fully non-inductive current drive discharge has been achieved with high poloidal beta ($\beta_p > 3$)

□ Fully non-inductive discharge without limits in flux and MVA

- $\circ \ \ \, f_{NI} \sim 1, \, f_{BS} < 0.5, \, \beta_{p} > 3, \, \beta_{N} \sim 2, \, H_{89} \sim 2.0, \, \text{li} \sim 1.2,$
- \circ B_T=2.9 T, I_P=0.4 MA, P_{NBI}=5.0 MW, P_{ECH}~ 0.8 MW

□ Early termination due to safety interlock (heat load on poloidal limiter)

 Increases fast ion loss from neutral beam at lower plasma current Temperature rise in poloidal limiter

KSTAR

H-mode discharge with highly non inductive current drive has been extended over 1 min (~ 70s)

- □ Problem of heatload on poloidal limiter was resolved by reduced NBI power (5.1 \rightarrow 3.8 MW) and increased gap between plasma and PFC
 - \circ f_{NI} ≤ 1, β_p : 2.4 ~ 1.9, β_N ~ 1.8 ~ 1.5, W_{MHD} ~ 0.3 − 0.25 MJ
 - $\circ~$ B_T=2.5 T, I_P=0.45 MA, P_{NBI}=3.8 MW, P_{ECH}\sim 0.8 MW
- □ However density and loop voltage increased slowly from 30s due to un-controlled striking point → need density control and striking point control

KSTAR

KSTAR observed ITB formation in L-mode discharge with the confinement comparable to that of H-mode

- ITB could last up to 10s (> 40 $\tau_{\rm E}$).
- □ Significant improvement in confinement (stored energy and β_N) with comparable to that of H-mode discharge

Higher β_N and lower q95 discharges are under development for the stability limit research

- KSTAR H-mode equilibria have reached and exceeded the computed n = 1 ideal no-wall stability limit
 - $_{\circ}$ Highest β_{N} = 4.3, $\beta_{\text{N}}/\text{I}_{\text{i}}$ =6.3
 - $\circ \ \mbox{High} \ \beta_{N} > \beta_{N}^{\ \mbox{no-wall}} \ \mbox{operation mostly limited} \\ \mbox{by 2/1 mode} \ (\beta_{N} = 3.3 \ \mbox{sustained 3 s}) \\ \label{eq:basic}$

- Attempt lower q₉₅ (< 2.3) discharge to minimize harmful MHDs (low m/n)
 - $\,\circ\,$ Low m/n rational surfaces are pushed out
 - Removal of strong n=3 mode brought the confinement recovery (red shade).

Development of hybrid and reverse shear scenarios for high confinement regime

- In KSTAR, hybrid mode was achieved by beam timing control in H-mode, and sustained for 5-8 s without any harmful MHD activities
 - G (= $\beta_{\rm N} H_{89} / q_{95}^2$) ~ 0.38,
 - $H_{89} < 2.3, \, \beta_N < 2.7 \, at \, q_{95} = 3.8-4.5$
 - It was close to ITER baseline (G = 0.4) and above ITER steady state (G = 0.3)

Courtesy of Y.S. Na (SNU), et al

Weak reverse shear profile achieved by revered I_p operation due to strong counter tangential NBCD

IAEA FEC 2016, KSTAR_YKOH

NATIONAL

OUTLINE

Introduction

- Research directions
- Unique research tools on KSTAR and role for the test bed for ITER and beyond

Research highlights of KSTAR

• Extension of H-mode and high performance discharges into long pulse and steady-state

• Reliable ELM crash free operation and analysis

• Exploring confinement and stability issues using KSTAR unique research tools

Demonstration of extremely reliable ELM crash suppression (~ 10 s) under static and rotating RMP

- □ Robust ELM crash suppression is one of the high priority issues in ITER with W wall.
- Recently, KSTAR has demonstrated very stable ELM crash suppression under static and rotation of the RMP (resonance magnetic perturbation).
 - Wider $q_{95} = 5 \pm 0.25$ (relaxed constraint), Rx or triangularity dependance (Delta_lower ~ 0.74 \pm 0.04)

Profile of divertor heat flux has ben measured during ELM-crash suppression at static and rotating RMP

- Heat flux profile shows very different splitting pattern, depending on phasing and coil configuration
- Intentionally misaligned RMP configurations would spread the divertor heat fluxes in a wider area (in support of ITER)

Heat flux splitting by misaligned RMP configuration

K§TAR

Plasma surface interaction of metal divertor using castellated Tungsten block

Install and exposure of castellated tungsten block

- Castellated W tile with different leading edge and shape installed on divertor
- Heat flux and temperature are monitored using IRTV (3x optical zoom)

□ A complete set of deposition profiles inside the gap of castellated blocks were analyzed.

Research on the retention and high-Z impurity transport in KSTAR

- Hydrogen retention on carbon wall depends on plasma current and pulse length.
 - Retention is proportional to pulse length and issues in long pulse discharge.
 - Wall conditioning between shot
- Ar impurity accumulation control using ECCD and RMP
 - On-axis ECCD suppressed core accumulation of Ar
 - Hollowed profile in L-mode and flat profile in H-mode
 - Kr injection changed ELM features (mitigation and suppression)

K§TAR

OUTLINE

Introduction

- Research directions
- Unique research tools on KSTAR and role for the test bed for ITER and beyond

Research highlights of KSTAR

- Extension of H-mode and high performance discharges into long pulse and steady-state
- Reliable ELM crash free operation and analysis
- Exploring confinement and stability issues using KSTAR unique research tools

Future plan & summary

Validation of $q_0 \ge 1.0$ in MHD quiescent time after the sawtooth crash

- □ 30 yrs ago, at Kyoto IAEA, it was reported that $q_0 \cong 0.75 \pm 0.03$ (TEXTOR and TFTR)
- □ 20 yrs ago, $q_0 \cong 1.0 \pm 0.03$ was reported (DIII-D) and later raised issue of E_r effect
- □ 2016, KSTAR validates $q_0 \ge 1.0$
 - □ MSE measured $q_0 \cong 1.0 \pm 0.03$ but uncertainty from E_r and κ makes q_0 value uncertain

Required absolute accuracy is ± 0.01 for $q_0 \ge 1.0$ after the crash (challenging !!)

(EX/P4-27) J. Ko (NFRI), et al

- Growth and decay of the tearing mode Exp. within q=1 surface
- Sawtoothing discharge : tearing mode evolve (e.g. 3/3 to 2/2, 1/1)
- Non-sawtoothing discharge : no change
 (E)

KSTAR

Theoretical and experimental validation of the ELM crash suppression mechanism

Nonlinear interaction btw ELM & turbulent eddies induced by RMP

 Broadband turbulence induced by RMP damps the ELM amplitude

- Exploring optimum phasing angle and amplitude for reliable ELM crash suppression
 - Fixed top/bottom at 5kA/turn
 - Phasing and amplitude of middle coil
 - Experiments well match with modeling
 - Plasma response calculation is necessary over vacuum calculation

- 22 -

KSTAR has an excellent environment for Neoclassical Toroidal Viscosity (NTV) physics research using reliable rotation profiles

Plasma rotation highly important for tokamak stability and confinement

- If sufficiently strong, this rotation could provide stabilization and improved performance in ITER and future devices
- Effect of localized NTV on toroidal rotation profile : (TH/P3-11) J. Seol (NFRI) et al
- Code verification and validation in most quiescent plasmas : (TH/P1-6) J.K. Park (PPPL) et al

 Final saturated rotation profile at n=2 lead to strong rotation shear at edge

K§TAR

L-H transition threshold power (P_{th}) depends on the level of error field in fusion devices

- □ The dependence of P_{th} on the applied error field ($\delta B/B_0$) was reported by DIII-D team (2011). □ P_{th} dependence on n=1, 2 error field has been measured In KSTAR,
 - P_{th} in KSTAR is much less than the *Martin scaling* (Journal of Physics, 2008) at single mode error field ($\delta B/B_0 < 2.7 \times 10^{-4}$), which is level of intrinsic error field in conventional devices.
 - However, in mixed mode error field case, strong dependence of Pth on $\delta B/B_0$
- □ It showed that the n=2 error field is not negligible compared to n=1 error field to get H-mode within limited heating power such as in early state of ITER operation.
 - For ITER, the test blanket module is one of the sources of error field and need a clear mapping of δB .

OUTLINE

Introduction

- Research directions
- Unique research tools on KSTAR and role for the test bed for ITER and beyond

Research highlights of KSTAR

- Extension of H-mode and high performance discharges into long pulse and steady-state
- Reliable ELM crash free operation and analysis
- Exploring confinement and stability issues using KSTAR unique research tools

Future plan & summary

Major system upgrade toward high beta long pulse operation (~2021)

- □ Up to 2020, research campaigns to explore the optimum operation regime for steadystate and high beta using NBI-2 : Confinement, Stability, Bootstrap current, etc.
- From 2021, In-vessel components upgrade for the optimized plasma volume and shape
- Optimized divertor configuration with new first wall material (compatible for k-DEMO)
- Optimum current drive configuration: high field side LHCD, Helicon CD, top launching ECCD

Contribution to IAEA FEC from KSTAR collaborators

[Overview & scenarios]

•	OV/2-3	Y.K. Oh
•	EX/P4-1	S.W. Yoon
•	EX/P4-12	S.H. Hahn

- EX/P4-13 H.S. Kim
- EX/P4-14 J.W. Lee
- EX/P4-53 H. Lee

[3D field, ELM & NTV]

•	EX/1-3	Y. In
•	EX/10-3	G.S. Yun

- TH/P3-11 J. Seol
- EX/P4-33 S. Sabbagh
- TH/P1-28 J. Kim
- EX/P4-4 W.H. Ko
- EX/P4-7 M. Kim
- EX/P4-9 K. Kim
- EX/P4-15 J.H Lee

[Divertor & PSI]

- EX/P4-21 S.H. Hong
- EX/P4-24 H.H. Lee
- EX/P4-25 M.K. Bae
- EX/P4-30 J.W. Ahn
- TH/P6-5 W. Choe

[Fusion engineering]

- FIP/3-3 J. Kang
- FIP/P7-15 J. Park

Algorithm for K-DEMO Structure analysis for K-DEMO

KSTAR Overview

Nonaxissymetric

NTV & rotation

NTV profile & 3D

Magnetic braking

ELM & global structure

Magnetic perturbation

ECEI ELM observation

Deposition inside gaps

Heat flux to first wall

Divertor target heat load

Diverter heat flux & 3D

Divertor heat flux & 3D

L-H treshold under 3D field

Edge turbulence interaction

High beta operation

Vertical stabilization control

Trap Particle Confinement

EBW assisted startup, VEST

Physics based profile control

[MHD, EP & disruption]

- EX/P4-3 H. Park
- TH/P1-17 A. Aydemir
- EX/P3-19 D. Orlov
- EX/P4-2 Y.S. Park
- EX/P4-5 J.Kim
- EX/P4-6 Y. In
- J.G. Bak • EX/P4-8
- EX/P4-10 S.G. Lee
- EX/P4-20 W. Lee
- EX/P4-26 J.H. Kim
- EX/P4-28 M. Cheon
- EX/P4-29 C.M. Ryu
- EX/P4-22 J.G. Kwak Neutron yield

[Confinement & transport]

- TH/P2-25 J.Y. Kim Energy confinement Toroidal rotation & ELM
- EX/P4-16 S. Ko • EX/P4-23 K.C. Lee Poloidal asymetry on ELMs
- EX/P4-17 Y. Shi
- TH/P2-24 Y.S. Na
- EX/P4-19 D.H. Na
- EX/P4-27 J. Ko
- EX/P4-18 JH. Hong
- TH/8-3 H.G. Jhang
- TH/P3-13 H.H. Kaang
- TH/P3-25 T.S. Hahm
- TH/P3-27 M. Leconte Zonal flow & RMP
- TH/P3-29 S.S. Kim
- TH/P3-32 C.Y. An

- Sawtooth crash
- Disruption
- Perturbation & MHD
- MHD stability at high betaN
 - Destabilizing Edge instability
 - Locked mode dissipation
- Halo current
- Long-lived mode
 - Ion-scale turbulence

Particle transport

Ar transport

ExB shear

- Alfven Eigenmode
- Runaway Runaway electron

Rotation reversal & transport

Zonal flow and edge collapse

Intrinsic rotation reversal

Current profile evolution

Momentum transport

Turbulence BOUT++

Energy non-trapping

TAE

•

KSTAR

Summary

KSTAR, as an international collaboration device, has directions to resolve the scientific and technical issues in developing steady-state high beta and advanced plasma operation regime for ITER and K-DEMO.

KSTAR is well engineered superconducting tokamak with several unique research tools as a test bed for ITER and K-DEMO ;

- lowest intrinsic error field and ITER relevant in-vessel control coils (top/middle/bottom)
- Advanced 2D/3D imaging diagnostics and long pulse heating/CD systems

Remarkable progress in plasma operation and physics research has been conducted according to strong contribution from domestic and international collaborators.

- extension of H-mode discharge into large lp (1 MA) and long pulsed (up to 70s)
- developing stationary high performance discharge (high beta and ITB operation)
- robust ELM-crash suppression (~10sec) at n=1 under static and rotational RMP.
- theoretical and experimental validation of MHD instabilities (sawtooth and ELMs)

Improved research long pulse & high performance operation (Ti ~ 10 keV) and in-depth r esearch are planned using NBI-II installation (2018) and in-vessel components upgrade i n divertor and current drive (2021).

Your recommendation and collaboration on KSTAR are very welcome everytime.

Thank you for your attention !

Back Up Slides

Plasma control improvement for Mega-ampere discharge and ITER baseline scenario

Plasma control improvement to access Mega-ampere current (1 MA) H-mode

- Advanced control technique integrations developed for ITER baseline scenario research in KSTAR
 - "Decoupled" Z control in the frequency responses
 - Real-time PF feedforward calculation w/ plasma resistance tracking
 - MIMO X-point controller

ITER-similar shape (scaled for KSTAR)

parameter	#16380 t=6.4s	Scaled ITER BS
$\beta_{\rm N}$	2.0	1.8
q ₉₅	3.2	3.2
к	1.8	1.9
I _p ∕aB _⊤	1.0	1.4

Courtesy of M. Lanctot (GA), et al

(EX/P4-12) S.-H. Hahn (NFRI), et al

s, shot = 1880 bit = FEITRT1, time = 12.0

◆ GENERAL A

K\$TAR

IAEA FEC 2016, KSTAR_YKOH

Validation of complete reconnection model

- Time evolution of the 3/3 mode in one sawtooth cycle suggests q₀ >1.0 up to 2/2 mode.
- q₀ drops below ~1.0 as the 1/1 kink mode appears
- The strength of 1/1 mode may suggests the depth of the drop.
- No mode number change in non-sawtoothing discharge
- Kadomtsev model is valid model !!!

Complete or incomplete reconnection ? (q₀?)

- Measurement of q₀ at the center has been intrinsically difficult !! <u>MSE</u>:E_r and kappa. <u>Polarimeter</u>;uncertainties in double inversion
 - $q_0 = 0.75 \pm 0.5$ [TEXTOR;Soltwisch(1988)], [TFTR; Levinton (1989)]
 - q₀ ~ 0.95 to 1.1 [DIII-D; Wroblewski (1992,1993), Rice (1997)]
 - q₀ ~ 0.8 to 1.1 [JET; N. Hawkes (1996?)]
- If the measurement is ~1.0, then it is difficult to conclude the sawtooth instability is complete or incomplete

H. Soltwitsch (TEXTOR)

Figure 9. Behaviour of q(0), during a Sawtooth on TEXTOR. The axial value of q never rises above 0.8. Box-car averaging techniques were used to sum the signals from many similar Sawteeth, and enable the ~ 5% sudden changes in q_0 to be monitored.

ITB

Model discharge for high beta steady state operation for K-DEMO

- Eliminate ELM-crash
 - Core H-mode + edge L-mode
- Eliminate harmful MHDs such as 2/1 mode
 - Edge q95 ~2.1 2.3
- Easy control of sawtooth for particle exhaust
 - ECH for crash time
 - Off-axis CD for on/off switch for sawtooth
- 3/2 mode is relatively easy to control

Upgrade plan of the heating and CD for high performance steady-state operation

12 MW NBI systems

- 8 MW on-axis and 4MW off-axis
- Broader j(r) & p(r) for higher β_N limits

6 MW ECH/CD

- 4MW 105/140 & 2 MW 140/170 GHz
- Higher Te/Ti, q(r) tailoring, Rotation control, MHD control
- 4 MW LHCD and 4MW Helicon
 - off-axis CD & $\beta_N \sim 5$ (RS with $q_{min} > 2$)
- Expected high performance discharge $G = \beta_N H_{89}/q_{95}^2 = 0.92$

Upgrade plan of heating system for high performance steady-state operation

□ Heating system upgrade to ~28 MW

- NBI : 5.5 MW → total 12 MW ('18) : on & off-axis, collab. KAERI, QST, PPPL
- ECH/CD : 105/140 GHz (2 MW) & 140/170 GHz (4 MW) *collab.* QST, PPPL, KAERI
- LHCD : 5 GHz (4 MW, PAM or HFS launch) *collab. CEA, MIT, POSTECH*
- Helicon CD : 0.5 MHz (4MW) *collab. KI, SLAC, POSTECH*
- ICRF : 30-60 MHz, optimize for IC wall condition

Courtesy : J.M Park (ORNL)

	Near Term	Long Term
P _{NB} On/Off	4/4 MW	6/4 MW
P _{EC} (X2)	2.4 MW	4.8 MW
P _{LH}	-	3 MW (n//=2.0 from off-mid)
Ι _p /Β _τ	0.6 MA/1.8 T	1 MA/1.8T
9 ₉₅	5.2	3.1
Shape	SN	DN
β _N	3.45	4.2
f _{NI} /f _{BS}	1.0/0.5	1.1/0.47
H ₈₉	2.2	2.1
q_{min}	1.54	1.63
$G = H_{89} \beta_N / q_{95}^2$	0.3	0.92
T_/T	1.31	1.1

