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Fully non inductive high beta (P > 3) discharge  

and physics validation of sawtooth and turbulence 

 High P  steady-state (fully non-inductive) 

discharge and extension to 70s 

BT=2.9 T, IP=0.4 MA, PNBI=5.0 MW, PECH~ 0.8 MW,  

fNI ~ 1, fbs < 0.5, βp > 3, βN ~ 2, H89 ~ 2.0, li ~ 1.2  

 Physics validation of q0  1.0 in MHD 

quiescent time after the sawtooth crash  

• 30 yrs ago, at Kyoto IAEA, it was reported 

that  q0 ≅  0.75 ± 0.03  (TEXTOR and 

TFTR) 
• In 2016, KSTAR validates q0 ≥1.0 

MSE measured  

q0 ≅1.0 ± 0.03  

but uncertainty 

from Er and  

makes q0 value  

uncertain 

ELM 

Turbulence 

 Nonlinear interaction btw ELM & turbulent 

eddies induced by RMP 
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OUTLINE 

 Introduction  

o Research directions  

o Unique research tools on KSTAR and role for the test bed 

for ITER and beyond 

 

 Research highlights of KSTAR 

o Extension of H-mode and high performance discharges into 

long pulse and steady-state 

o Reliable ELM crash free operation and analysis 

o Exploring confinement and stability issues using KSTAR 

unique research tools 

 

 Future plan & summary 
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Research directions and key parameters in KSTAR 

  Key parameters of KSTAR, ITER & K-DEMO  Research directions of KSTAR 

• Extend the reference H-mode and high 

performance discharge into long-pulse 

utilizing SC magnets 

Parameters 
KSTAR 

(achieved) 

ITER 

(Baseline) 

K-DEMO 

(Option II) 

Major radius, R0  [m] 

Minor radius, a  [m] 

Elongation,  

Triangularity,  

Plasma shape 

 

Plasma current, IP [MA] 

Toroidal field, B0 [T] 

H-mode duration [sec] 

N 

fbs 

Superconductor 

Heating /CD [MW] 

PFC 

Fusion power, Pth [GW] 

1.8 

0.5  

2.0 (1.8) 

0.8 

DN, SN 

 

2.0 (1.0) 

3.5  

300 (70) 

5.0 (4.3) 

 

Nb3Sn, NbTi 

~ 28 (10) 

C, W 

6.2 

2.0 

1.7 

0.33 

SN 

 

15 

5.3  

400 

~ 2.0 

 

Nb3Sn, NbTi 

~ 73 

W 

~0.5 

6.8 

2.1 

1.8 

0.63 

DN (SN) 

 

> 12 

7.4 

SS 

~ 4.2 

~ 0.6 

Nb3Sn, NbTi 

160 

W 

~ 2.1 

(2016) 

• Explore confinement and stability issues  

using the KSTAR uniqueness 

• Exploit new stable high-beta and advanced 

plasma operation regime for K-DEMO 
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KSTAR has unique research tools as the test bed for ITER and 

K-DEMO 

 Lowest intrinsic error field (B/B0 ~ 1x10‐5) and 

low magnetic ripple (~0.05%)  

o Lower L-H transition threshold power 

o High beta operation accessible without error field 

correction 
Y. In (NFRI) NF2015 

 ITER relevant In-vessel control coils (IVCC) for ELM 

control 

o Three poloidal rows (top / middle / bottom) same as 

ITER 

o Stable ELM crash suppression/mitigation at n=1, 2 

and mixed 

 Advanced 2D/3D imaging diagnostics 
o 2D/3D ECEI, MIR, BES, etc 

o New physics from the measurement of turbulence 

and MHD instabilities 

Y.M. Jeon (NFRI) PRL2012 

G.S. Yun (POSTECH) PRL2011 
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Status of heating & current driving systems in KSTAR 

NBI (~’18) 

6 MW, 100 keV, on-axis  

6 MW, 100 keV, on/off-axis 

ECH/CD  

2 MW, 105/140 GHz 

4 MW, 170/140 GHz 

Helicon CD 

0.5 GHz, 4 MW 

LHCD  

5 GHz, 4 MW 

ICRF/ICWC 

30-60 MHz, 2 MW  

Goal of H&CD   

~ 28 MW, 300s 

NBI 

5.5 MW, 100 keV 

(on-axis, ~70s)  

ECH/CD  

1 MW, 105/140 GHz  

1 MW, 170 GHz 

Helicon CD 

0.3 MW, 0.5 GHz 

LHCD 

0.5 MW, 5 GHz 

ICRF 

2 MW, 30-60 MHz 

Heating &CD in 2016 

~10 MW 

• Fueling (SMBI, pellet, divertor puffing) 

• In-vessel cryo-pump 

• Wall conditioning under TF field 

• Active water cooling on PFC 

• Castellated PFC/Divertor tile 

NBI-1

NBI-2

Long pulse 

operation of NBI

Water-cooled steering 
mirror (collab. with PPPL)

Prototype Helicon CD &
fully active LHCD antenna
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Diagnostics systems developed through collaboration 

 Profile Diagnostics 

Imaging Bolometer 

Soft X-ray Imaging 

BES 

ECEI  

MIR 

Tangential & Div IRTV 

Visible TV 

 Imaging Diagnostics 

Magnetic Diagnostics 

Edge Probe 

VUV Spectrometer 

Deposition Probe 

FILD 

Neutron Spectrom. 

Visible Filterscope 

ASIPP

Interferometers 

 Survey Diagnostics 

Thomson Scattering 

ECE Radiometer 

CES / XICS 

MSE / iMSE 

ASIPPReflectometer 

Reciprocating Probe 

TU/e 

Te profile  

(ECE & Thomson) 

Thomson 

ECE 

q profile  

(MSE)  

2500 ms (w/   ITB) 

4500 ms (w/o ITB H-mode) 

6500 ms (w/o ITB L-mode) 

#16498 

q 

psi_n 

Ti & rotation profile  

(CES / XICS) 
Turbulence 

(ECEI)  
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OUTLINE 

 Introduction  

o Research directions  

o Unique research tools on KSTAR and role for the test bed 

for ITER and beyond 

 

 Research highlights of KSTAR 

o Extension of H-mode and high performance discharges 

into long pulse and steady-state 

o Reliable ELM crash free operation and analysis 

o Exploring confinement and stability issues using KSTAR 

unique research tools 

 

 Future plan & summary 
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Fully non-inductive current drive discharge has been 

achieved with high poloidal beta (βp > 3) 

 Fully non-inductive discharge without limits in flux and MVA 

(EX/P4-1) S.W. Yoon (NFRI), et al  

o fNI ~ 1, fBS < 0.5, βp > 3, βN ~ 2, H89 ~ 2.0, li ~ 1.2,  
o BT=2.9 T, IP=0.4 MA, PNBI=5.0 MW, PECH~ 0.8 MW 

 Early termination due to safety interlock (heat load on poloidal limiter) 

o Increases fast ion loss from neutral beam at lower plasma current 

q

Ny

q 

J 

Te, Ti 

Temperature rise in poloidal limiter 

at long pulse operation (IRTV) 

Good agreement with 

prompt loss calculation  

Courtesy of K. Shinohara (QST) 
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H-mode discharge with highly non inductive current 

drive has been extended over 1 min (~ 70s) 

 Problem of heatload on poloidal limiter was resolved by reduced NBI power (5.1  3.8 MW) 

and increased gap between plasma and PFC 
o fNI ≤ 1, βp : 2.4 ~ 1.9, βN ~ 1.8 ~ 1.5, WMHD ~ 0.3 – 0.25 MJ  

o BT=2.5 T, IP=0.45 MA, PNBI=3.8 MW, PECH~ 0.8 MW 

 

EX/P4-1, S.-W. Yoon (NFRI), et al 

11 

time (s) 

#17321 
IP=0.45 MA 

PNBI=3.8 MW 
PECH=0.8 MW 

Vloop~0.0-0.1 V 

ne,avg~2.7 x1019 m-3 

WMHD~0.3-0.25 MJ 

βN~1.8-1.5  

βp~2.4-1.9  

BT=2.5 T 

Degradation may comes from 

shift of outer strike point  

at t=20s 

at t=30s 

at t=70s 

 However density and loop voltage increased slowly from 30s due to un-controlled striking 

point   need density control and striking point control 

ne increase 

WMHD decrease 



- 12 - IAEA FEC 2016, KSTAR_YKOH 

KSTAR observed ITB formation in L-mode discharge 

with the confinement comparable to that of H-mode 

Courtesy of J. Chung, H.S. Kim (NFRI) 

 ITB (internal transport barrier) formed at electron and ion 

temperature profiles  

• ITB could last up to 10s (> 40 𝝉E). 

Io
n

 t
e

m
p

e
ra

tu
re

 (
k
e
V

) 

𝝍𝑵 

ITB @ 2.5 s 

H-mode @ 4.5 s 

ITB foot 
H-mode 

Pedestal 

S
a

fe
ty

 f
a

c
to

r 

𝝍𝑵 

ITB @ 2.5 s 

H-mode @ 4.5 s 

ITB foot 

weaker magnetic 

shear at ITB 

 Significant improvement in confinement (stored energy 

and 𝜷N) with comparable to that of H-mode discharge 
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Higher N and lower q95 discharges are under 

development for the stability limit research 

 KSTAR H-mode equilibria have reached 

and exceeded the computed n = 1 ideal 

no-wall stability limit 

o Highest N = 4.3, N/li =6.3  

o High N > N
no-wall operation mostly limited 

by 2/1 mode (N =3.3 sustained 3 s) 

Y.S. Park, S. Sabbagh (Columbia U), et al, NF 2013 

(EX/P4-2), Y.S. Park (Columbia U), et al 

 Attempt lower q95 (< 2.3) discharge to 

minimize harmful MHDs (low m/n) 

o Low m/n rational surfaces are pushed out 

o Removal of strong n=3 mode brought the 

confinement recovery (red shade). 

Courtesy of J. Kim (NFRI) et al 

q95=2.25 

n=3 

n=4 

n=1 

n=2 
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Development of hybrid and reverse shear scenarios 

for high confinement regime 
 In KSTAR, hybrid mode was achieved by 

beam timing control in H-mode, and 

sustained for 5-8 s without any harmful 

MHD activities  

• G (= NH89/q95
2 ) ~ 0.38,  

• H89 < 2.3, βN < 2.7 at q95 = 3.8-4.5 

• It was close to ITER baseline (G = 0.4) and 

above ITER steady state (G = 0.3) 

 Weak reverse shear profile achieved by 

revered Ip operation due to strong counter 

tangential NBCD 

Courtesy of J. Kim (NFRI) et al 

q profile 

Reversed Ip: J║ 

Normal Ip: J║  

Counter- NBCD 

Hollow J profile 

Weakly reverse 

magnetic shear  

Co- NBCD 

peaked J profile 

Courtesy of Y.S. Na (SNU), et al 

ITER level 
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OUTLINE 

 Introduction  

o Research directions  

o Unique research tools on KSTAR and role for the test bed 

for ITER and beyond 

 

 Research highlights of KSTAR 

o Extension of H-mode and high performance discharges 

into long pulse and steady-state 

o Reliable ELM crash free operation and analysis 

o Exploring confinement and stability issues using KSTAR 

unique research tools 

 

 Future plan & summary 
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Demonstration of extremely reliable ELM crash 

suppression (~ 10 s) under static and rotating RMP 

 Robust ELM crash suppression is one of the high priority issues in ITER with W wall. 

 Recently, KSTAR has demonstrated very stable ELM crash suppression under static and 

rotation of the RMP (resonance magnetic perturbation).   
• Wider q95 = 5±0.25 (relaxed constraint), Rx or triangularity dependance (Delta_lower ~ 0.74 ± 0.04) 

n=1 (+90 phasing) full RMP at q95~5.0 [~2 

kA/turn] 

Suppression ~ 10s 

Y.M Jeon (NFRI), PRL 

2012 

n=1 full RMP under 360 degree rotation 

3600 rotation 

(Post-Deadline) Y.M. Jeon (NFRI), et 

al 

ITER Invessel Coils 
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Profile of divertor heat flux has ben measured during 

ELM-crash suppression at static and rotating RMP 

Courtesy of A. Loarte (ITER) , et al 

(EX/P4-24) H.H. Lee (NFRI),  et al 

 Heat flux profile shows very 

different splitting pattern, 

depending on phasing and 

coil configuration 

 

 Intentionally misaligned 

RMP configurations would 

spread the divertor heat 

fluxes in a wider area (in 

support of ITER )  

(EX/P4-30) J. Ahn (ORNL), et al 

Heat flux splitting by misaligned RMP configuration 

IR camera

Vacuum
Measured 
heat flux

DfUL=	 90o 

(resonant)

+ - + -
- + - +
+ - + -

Plasma response (IPEC)

IR camera

+ - + -
- + - +
+ - + -
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Plasma surface interaction of metal divertor using 

castellated Tungsten block 

 Install and exposure of castellated 

tungsten block 

• Castellated W tile with different leading 

edge and shape installed on divertor 

• Heat flux and temperature are monitored 

using IRTV (3x optical zoom) 

(EX/P4-21) S.H. Hong (NFRI), et al 

Divertor IRTV 

(w/ optical zoom) Castellated W tile 

Deposition depending on the height 

of leading edge 

Diverter  

IRTV 

 The heat load on divertor is evaluated using 

IRTV (tangential & vertical) 

 A complete set of deposition profiles inside 

the gap of castellated blocks were analyzed. 
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Research on the retention and high-Z impurity 

transport in KSTAR 

 Hydrogen retention on carbon wall 
depends on plasma current and pulse 
length.  

• Retention is proportional to pulse 
length and issues in long pulse 
discharge. 

• Wall conditioning between shot 

Fuel retention on carbon tile according to plasma current 

and pulse length 

Pulse 

length 

Plasma 

current 

(EX/P4-18) J. Hong (KAIST), et al 

L-mode 

H-mode 

 Ar impurity accumulation control using 
ECCD and RMP  

• On-axis ECCD suppressed core 
accumulation of Ar  

• Hollowed profile in L-mode and flat 
profile in H-mode  

• Kr injection changed ELM features 
(mitigation and suppression) 
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Validation of q0  1.0 in MHD quiescent time after the 

sawtooth crash  

 30 yrs ago, at Kyoto IAEA, it was reported that         

q0 ≅  0.75 ± 0.03  (TEXTOR and TFTR) 

 20 yrs ago, q0 ≅ 1.0 ± 0.03 was reported (DIII-D) 

and later raised issue of Er  effect 

 2016, KSTAR validates q0 ≥1.0 

 MSE measured q0 ≅1.0 ± 0.03 but uncertainty 

from Er and  makes q0 value uncertain 

(EX/P4-27) J. Ko  (NFRI), et al 

 Growth and decay of the tearing 

mode Exp. within q=1 surface  

• Sawtoothing discharge : tearing 

mode evolve (e.g. 3/3 to 2/2, 1/1) 

• Non-sawtoothing discharge : no 

change 

Required absolute 

accuracy is  ± 0.01 for  

q0 ≥1.0 after the crash 

(challenging !!) 

(EX/P4-3) H. Park (UNIST), et al 
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Theoretical and experimental validation of the ELM 

crash suppression mechanism 

ELM 

Turbulence 

 Nonlinear interaction btw ELM & turbulent 

eddies induced by RMP 

o Broadband turbulence induced by RMP 

damps the ELM amplitude 

(EX/P4-15) J. Lee (UNIST), et al  

J. Lee (UNIST), PRL 2016  

 Exploring optimum phasing angle and 

amplitude for reliable  ELM crash 

suppression 

• Fixed top/bottom at 5kA/turn  

• Phasing and amplitude of middle coil 

• Experiments well match with modeling 

• Plasma response calculation is necessary 

over vacuum calculation 

Courtesy of J.K. Park (PPPL)  et al 
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KSTAR has an excellent environment for Neoclassical Toroidal 

Viscosity (NTV) physics research using reliable rotation profiles 

q95~6 

 Plasma rotation highly important for tokamak stability and confinement  

• If sufficiently strong, this rotation could provide stabilization and improved performance 
in ITER and future devices  

• Effect of localized NTV on toroidal rotation profile : (TH/P3-11) J. Seol (NFRI) et al 

• Code verification and validation in most quiescent plasmas : (TH/P1-6) J.K. Park (PPPL) et al 

(EX/P4-9) K. Kim (KAIST), et al  

o 0-phasing : quiescent, No density pump-out  

o -90 phasing : resonant configuration 

o 90 phasing : transition 

Phase dependence on NTV magnetic braking 

(EX/P4-33) S. Sabbagh (Columbia U.) , et al 

Direct measured rotation profile and 

NTV offset 

o Final saturated rotation profile at n=2 lead 

to strong rotation shear at edge 

http://www.kaist.ac.kr/html/en/
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L-H transition threshold power (Pth) depends on the 

level of error field in fusion devices 

 The dependence of Pth on the applied error field (B/B0)  was reported by DIII-D team (2011).  

P. Gohil (GA), et. al, NF 51 103020 (2011) (EX/P4-4) W.H. Ko (NFRI), et al 

(KSTAR) 

0 1 2 3 4 5

0.8

1.0

1.2

1.4

1.6

 B/B
0
 (10

-4
)

 

 

 
P

th
 [

M
W

]

n=1 n=2 n=1(fixed) +  n = 2

  P
TH, scal08

 

KSTAR, 0.6MA, 1.8T, q
95

~4.1, n
e
= 2x10

19
m

-3

Martin scaling  

for KSTAR 

(DIII-D) 

Martin scaling  

for DIII-D 

 Pth dependence on n=1, 2 error field has been measured In KSTAR,  

• Pth in KSTAR is much less than the Martin scaling (Journal of Physics, 2008) at single mode 

error field (B/B0 < 2.7 x 10-4), which is level of intrinsic error field in conventional devices. 

• However, in mixed mode error field case, strong dependence of Pth on B/B0 

 It showed that the n=2 error field is not negligible compared to n=1 error field to get H-mode within 

limited heating power such as in early state of ITER operation.  

• For ITER, the test blanket module is one of the sources of error field and need a clear mapping of B. 

KSTAR data 
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OUTLINE 
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Major system upgrade toward high beta long pulse 

operation (~2021) 

 Up to 2020, research campaigns to explore the optimum operation regime for steady-

state and high beta using NBI-2 : Confinement, Stability, Bootstrap current, etc. 

 From 2021, In-vessel components upgrade for the optimized plasma volume and 

shape 

 Optimized divertor configuration with new first wall material (compatible for k-DEMO) 

 Optimum current drive configuration: high field side LHCD, Helicon CD, top launching 

ECCD 

2008 2016 2018 2021 

First plasma NBI-II Major upgrade 

•  Research on long pulse & 

steady-state H-mode 

operation 

• Stable ELM–crash free 

operation 

• Study of MHD dynamics 

• Stable high beta regimes 

explored using NBI-II (Ti ~ 

10 keV) 

• In-depth physics using 

advanced diagnostics 

• Prepare major upgrade 

• Advanced operation 

scenarios (k-DEMO 

relevant) 

• Advanced divertor 

research 

• Advanced current drive 
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Contribution to IAEA FEC from KSTAR collaborators 

[Fusion engineering] 
• FIP/3-3 J. Kang Algorithm for K-DEMO  
• FIP/P7-15 J. Park Structure analysis for K-DEMO 

[Overview & scenarios] 
• OV/2-3  Y.K. Oh  KSTAR Overview 
• EX/P4-1 S.W. Yoon High beta operation 
• EX/P4-12  S.H. Hahn Vertical stabilization control 
• EX/P4-13 H.S. Kim Physics based profile control 
• EX/P4-14 J.W. Lee Trap Particle Confinement 
• EX/P4-53 H. Lee EBW assisted startup, VEST 

[Confinement & transport] 
• TH/P2-25 J.Y. Kim Energy confinement 
• EX/P4-16 S. Ko Toroidal rotation & ELM 
• EX/P4-23 K.C. Lee Poloidal asymetry on ELMs 
• EX/P4-17 Y. Shi Rotation reversal & transport 
• TH/P2-24 Y.S. Na Particle transport 
• EX/P4-19 D.H. Na Intrinsic rotation reversal 
• EX/P4-27 J. Ko Current profile evolution 
• EX/P4-18 JH. Hong Ar transport 
• TH/8-3  H.G. Jhang Zonal flow and edge collapse 
• TH/P3-13 H.H. Kaang Momentum transport 
• TH/P3-25 T.S. Hahm ExB shear 
• TH/P3-27  M. Leconte Zonal flow & RMP 
• TH/P3-29 S.S. Kim Turbulence BOUT++ 
• TH/P3-32  C.Y. An Energy non-trapping 

[3D field, ELM & NTV] 
• EX/1-3  Y. In   Nonaxissymetric 
• EX/10-3 G.S. Yun ELM & global structure 
• TH/P3-11 J. Seol NTV & rotation 
• EX/P4-33 S. Sabbagh NTV profile & 3D 
• TH/P1-28  J. Kim Magnetic perturbation 
• EX/P4-4 W.H. Ko L-H treshold under 3D field 
• EX/P4-7 M. Kim ECEI ELM observation 
• EX/P4-9 K. Kim Magnetic braking 
• EX/P4-15 J.H Lee Edge turbulence interaction 

[MHD, EP & disruption] 
• EX/P4-3 H. Park Sawtooth crash 
• TH/P1-17  A. Aydemir Disruption 
• EX/P3-19 D. Orlov Perturbation & MHD 
• EX/P4-2 Y.S. Park MHD stability at high betaN 
• EX/P4-5 J.Kim Destabilizing Edge instability 
• EX/P4-6 Y. In Locked mode dissipation 
• EX/P4-8 J.G. Bak Halo current 
• EX/P4-10 S.G. Lee Long-lived mode 
• EX/P4-20 W. Lee Ion-scale turbulence 
• EX/P4-26 J.H. Kim Alfven Eigenmode 
• EX/P4-28 M. Cheon Runaway Runaway electron 
• EX/P4-29 C.M. Ryu TAE 
• EX/P4-22 J.G. Kwak Neutron yield 

[Divertor & PSI] 
• EX/P4-21 S.H. Hong Deposition inside gaps 
• EX/P4-24 H.H. Lee Divertor target heat load 
• EX/P4-25 M.K. Bae Heat flux to first wall 
• EX/P4-30 J.W. Ahn Diverter heat flux & 3D 
• TH/P6-5 W. Choe Divertor heat flux & 3D 
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Summary 

KSTAR, as an international collaboration device, has directions to resolve the scientific 

and technical issues in developing steady-state high beta and advanced plasma 

operation regime for ITER and K-DEMO. 

KSTAR is well engineered superconducting tokamak with several unique research tools 

as a test bed for ITER and K-DEMO ;  

• lowest intrinsic error field and ITER relevant in-vessel control coils (top/middle/bottom) 

• Advanced 2D/3D imaging diagnostics and long pulse heating/CD systems 

Remarkable progress in plasma operation and physics research has been conducted 

according to strong contribution from domestic and international collaborators.  

• extension of H-mode discharge into large Ip (1 MA) and long pulsed (up to 70s) 

• developing stationary high performance discharge (high beta and ITB operation) 

• robust ELM-crash suppression (~10sec) at n=1 under static and rotational RMP. 

• theoretical and experimental validation of MHD instabilities (sawtooth and ELMs)  

Improved research  long pulse & high performance operation (Ti ~ 10 keV) and in-depth r

esearch are planned using NBI-II installation (2018) and in-vessel components upgrade i

n divertor and current drive (2021).  

Your recommendation and collaboration on KSTAR are very welcome everytime. 
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29 

Thank you for your attention ! 

29 
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Back Up Slides 



- 31 - IAEA FEC 2016, KSTAR_YKOH 

Plasma control improvement for Mega-ampere 

discharge and ITER baseline scenario 

(EX/P4-12) S.-H. Hahn (NFRI), et al 

 Improved ECH-assisted startup using 

Trapped Particle Confinement 

 Plasma control improvement to access 

Mega-ampere current (1 MA) H-mode 

t (sec)

parameter 
#16380 

t=6.4s 

Scaled 

ITER BS 

N 2.0 1.8 

q95 3.2 3.2 

 1.8 1.9 

Ip/aBT 1.0 1.4 

ITER-similar shape 

(scaled for KSTAR) 

 Advanced control technique 

integrations developed for ITER 

baseline scenario research in KSTAR 
o “Decoupled” Z control in the frequency 

responses  

o Real-time PF feedforward calculation w/ plasma 

resistance tracking  

o MIMO X-point controller 

Courtesy of M. Lanctot (GA), et al 

(EX/P4-14) J. Lee (SNU), et al 
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Validation of complete reconnection model 

 Time evolution of the 3/3 mode in one 

sawtooth cycle suggests q0 >1.0 up to 2/2 

mode. 

 q0 drops below ~1.0 as the 1/1 kink mode 

appears 

 The strength of 1/1 mode may suggests the 

depth of the drop. 

 No mode number change in non-sawtoothing 

discharge 

 Kadomtsev model is valid model !!! 

-32- 
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Complete or incomplete reconnection ? (q0?) 

 
 
 
  

H. Soltwitsch (TEXTOR) 

D. Wroblewski, B. Rice (DIII-D) 

F. M. Levinton (TFTR) 

N. Hawkes (JET) 

-33- 
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ITB 
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Model discharge for high beta steady state operation 

for K-DEMO 

 Eliminate ELM-crash 
 Core H-mode + edge L-mode  

 Eliminate harmful MHDs 

such as 2/1 mode 
 Edge q95 ~2.1 - 2.3 

 Easy control of sawtooth for 

particle exhaust 
 ECH for crash time 

 Off-axis CD for on/off switch for 

sawtooth 

 3/2 mode is relatively easy to 

control 

Core  

H-mode 

Edge L-mode 

with 

Low q95 

#16498 

Core  

H-mode 
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Upgrade plan of the heating and CD for high performance 

steady-state operation  

 12 MW NBI systems 

• 8 MW on-axis and 

4MW off-axis 

• Broader j(r) & p(r) for 

higher N limits 

 

 6 MW ECH/CD 

• 4MW 105/140 & 2 MW 

140/170 GHz 

• Higher Te/Ti, q(r) 

tailoring, Rotation 

control, MHD control 

 

 4 MW LHCD and 4MW 

Helicon 

• off-axis CD & N ~ 5 

(RS with qmin > 2) 

 

 Expected high 

performance discharge 
• G = NH89/q95

2 = 0.92 

http://www.kaeri.re.kr:8080/
http://www.kaeri.re.kr:8080/
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Upgrade plan of heating system for high performance 

steady-state operation 

 Heating system upgrade to ~28 MW 

• NBI : 5.5 MW  total 12 MW (‘18) : on & off-axis, 
collab. KAERI, QST, PPPL 

• ECH/CD : 105/140 GHz (2 MW) & 140/170 GHz 

(4 MW) collab. QST, PPPL, KAERI 

• LHCD : 5 GHz (4 MW, PAM or HFS launch) collab. 

CEA, MIT, POSTECH 

• Helicon CD : 0.5 MHz (4MW) collab. KI, SLAC, 

POSTECH 

• ICRF : 30-60 MHz, optimize for IC wall condition 

NBI-1 

NBI-2 

Near Term Long Term 

PNB On/Off 4/4 MW 6/4 MW 

PEC (X2) 2.4 MW 4.8 MW 

PLH - 3 MW (n//=2.0 from off-mid) 

Ip/BT 0.6 MA/1.8 T 1 MA/1.8T 

q95 5.2 3.1 

Shape SN DN 

𝞫N 3.45 4.2 

fNI/fBS 1.0/0.5 1.1/0.47 

H89 2.2 2.1 

qmin 1.54 1.63 

G=H89𝞫N/q95
2 0.3 0.92 

Te/Ti 1.31 1.1 

Fusion performance, G  

G = NH89/q95
2 = 0.92  

(cf: G~0.5 for ITER) 

Courtesy : J.M Park (ORNL) 


