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Nonlinear MHD code XTOR-2F [1] : drift fluid 3D full MHD in a torus. 

Neoclassical model [2] : ion flow and bootstrap arise from friction forces 

 A self-consistent fluid drift-neoclassical model has been implemented 

in the XTOR-2F full MHD code [1,2] 

 Recovers standard neoclassical theory at equilibrium 

 Evidence of island filamentation at low dissipation 

 Bootstrap contribution mitigated by ExB flow 

 Island control by ECCD is modelled [5,6] 

 Stabilization efficiency vs source width & misalignment 

 Flip instability and RF-driven island (if 3D source & no rotation) 

 Control strategies mitigating misalignment & broad source 

 

 

 

Island control by ECCD: validation & 3D effects  
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Drift-neoclassical model and insights on NTM drive 

Summary 

: bootstrap current 

: stress tensor in CGL form 

: pressure anisotropy (p// -p) 

Main properties 

• Equilibrium flux averaged bootstrap current consistent with neoclassical theory [3] 

• Agrees with analytical estimates [4]; contribution from parallel heat flows [fig.1] 

• Non linear saturation is bursty at low dissipation (c, n) [fig.2] 

• Island shape : droplet like due to drift physics [fig.3] 

[4] 

Fig.1 : Flux averaged 

bootstrap current 

Fig.2 : Island size; bursty behaviour 

at low c, n  with neoclassical model. 
Fig.3 : Island shape with resistive, 

drift and neoclassical MHD models. 

Comparison with Rutherford approach 

• Effect of bootstrap current on saturation mitigated by ExB flow perturbation 

• Measured by correlation Rbs(p) between bootstrap and pressure perturbations 

• Correlation Rbs(p) increases with neoclassical friction mi and with island size [fig.4] 

• In Rutherford representation, fbs [=1 for reference case] replaced by Rbs(p)fbs  

• Still weaker effect compared with Rutherford prediction, even for an ad-hoc 

implementation of the bootstrap Jbs~p where Rbs(p)=1 

Fig.4 : Correlation between bootstrap & 

pressure perturbations vs island size. 
Fig.5 : Island size vs effective 

bootstrap current  

Fig.6 : (3,2) NTM triggering 

by changing Rbs(p) via c//. 

Application to Neoclassical Tearing Mode triggering on Asdex-Upgrade equilibrium 

• Correlation Rbs(p) varied by changing c// (~pressure flattening inside the island) 

• (3,2) NTM could be triggered for a seed Wseed~4% 

Implementation of a 3D RF current source (Js) in XTOR [5]  

• Propagation along field lines through parallel diffusion: quasi-homogeneous 

Validation of stabilization efficiency hRF with respect to analytical theory  

• Recovers predicted dependence vs source width dRF & vs misalignment [fig.7]  

• But reduction of hRF found in non-circular cross sections 

 

Specific features with a 3D source : island adjusts its phase to enhance its growth 

• Flip instability [6]: the X-point sets in close to the RF source (destabilizing) [fig.8] 

• RF-driven island : when close to a resonant surface, the RF current filament forms 

the X-point of an island [fig.9] 

Fig.7:Stabilization efficiency 

vs misalignment. 
Fig.8 : q - position of X-points 

vs time during flip instability. 

Fig.9 : RF-driven island size vs 

RF deposition (IRF/Ip=0.75%). 

• A basic controller has been implemented for radial sweep and modulation 

• Radial sweep aimed at mitigating misalignment risk [7]: successfully tested on TCV 

and Asdex-Upgrade during the last MST1 campaigns [see overviews, this conf.] 

• Modulation aimed at mitigating low efficiency associated with broad RF deposition 

• Evaluation of best strategy using the resistive MHD model [8] 

Island control by ECCD: evaluating various strategies  

Preemption  

• Risk due to misalignment [9]: mitigation by 

radial sweep at the cost of a larger IRF [fig.10] 

Stabilization (broad source, dRF/W=1.4) [fig.11] 

• Radial sweep : island reduction without misalignment risk, but less efficient than 

well positionned fixed source 

• Combined with modulation : full stabilization obtained 

• Alternate modulation with the FADIS (FAst DIrectional Switch) method uses 2 

antennae to obtain a nearly continuous O-point deposition [10] 

• Quantification by a gain G and a characteristic time Tmin 

• Wsat : island size without control 

• Wmin: minimum width obtained  

• W0    : minimum width for fixed, CW source 

• Tmin : time for reaching Wmin 

Fig.10 : Preemption capability as a 

function of RF current and sweep 

amplitude 

• Overview of stabilization strategies [fig.12] 

• Island control achieved without misalignment risk 

• Large gain for modulation techniques 

• Control time scale reduced with the FADIS alternate modulation scheme 

 

Thin RF source (dRF/W=0.7) : results qualitatively similar, but no advantage to use 

modulation techniques (G~1) (see [8]) 

Fig.11 : Island width evolution following 

different strategies (top); RF deposition 

during the sweep (bottom). 

Fig.12 : Gain as a function of 

characteristic control time Tmin. 


