FIRST PRINCIPLE FLUID MODELLING OF NEOCLASSICAL TEARING MODES AND OF THEIR CONTROL

P. Maget¹, O. Février¹, X. Garbet¹, G. Giruzzi¹, H. Lütjens², J-F Luciani², P. Beyer³, J. Decker⁴, O. Sauter⁴, E. Lazzaro⁵, S. Nowak⁵, M. Reich⁶, the ASDEX Upgrade team and the EUROfusion MST1 Team^{*}

¹ CEA, IRFM, F-13108 Saint Paul-lez-Durance, France. ² Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau, France. ³Aix-Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20, France. ⁴Swiss Plasma Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Station 13, CH-1015 Lausanne, Switzerland. ⁵ Istituto di Fisica del Plasma P.Caldirola, CNR, Milano, Italy. ⁶ Max Planck Institut für Plasmaphysik, Boltzmannstraβe 2, D-85748 Garching, Germany. *See appendix of H. Meyer et.al. (OV/P-12) Proc. 26th IAEA Fusion Energy Conf. 2016, Kyoto, Japan

Summary

- A self-consistent fluid drift-neoclassical model has been implemented in the XTOR-2F full MHD code [1,2]
 - Recovers standard neoclassical theory at equilibrium
 - Evidence of island filamentation at low dissipation
 - Bootstrap contribution mitigated by ExB flow
- Island control by ECCD is modelled [5,6]
 - Stabilization efficiency vs source width & misalignment

Island control by ECCD: validation & 3D effects

Implementation of a 3D RF current source (J_s) in XTOR [5]

Propagation along field lines through parallel diffusion: quasi-homogeneous

$$\frac{\partial J_{\rm RF}}{\partial t} = \nu_f (J_s - J_{\rm RF}) + \chi_{\perp}^{\rm RF} \nabla^2 J_{\rm RF} + \chi_{\parallel}^{\rm RF} \nabla_{\parallel}^2 J_{\rm RF}$$

Validation of stabilization efficiency η_{RF} with respect to analytical theory

- Recovers predicted dependence vs source width δ_{RF} & vs misalignment [fig.7]
 - But reduction of η_{RF} found in non-circular cross sections

- Flip instability and RF-driven island (if 3D source & no rotation)
- Control strategies mitigating misalignment & broad source

Drift-neoclassical model and insights on NTM drive

Nonlinear MHD code XTOR-2F [1] : drift fluid 3D full MHD in a torus. **Neoclassical model [2] : ion flow and bootstrap arise from friction forces**

 $\rho \left(\partial_t + \mathbf{V} \cdot \nabla \right) \mathbf{V} = -\rho \mathbf{V}_i^* \cdot \nabla \mathbf{V}_\perp + \mathbf{J} \times \mathbf{B} - \nabla p - \nabla \cdot \Pi_{\parallel} + \nabla \cdot \nu \nabla \mathbf{V}_i$ $\mathbf{E} + \mathbf{V} \times \mathbf{B} = \eta \left[\mathbf{J} - \mathbf{J}_{bs} - \mathbf{J}_{CD} \right] - d_i \frac{\nabla_{\parallel} p_e}{|\mathbf{J} - \mathbf{J}_{bs}|}$

$$J_{bs} = \frac{\eta - \eta_{SP}}{\eta} \left[J_{\parallel} + \frac{d_i}{\rho} \frac{3/2\pi_{\parallel e}}{(\eta - \eta_{SP})} \nabla \cdot \mathbf{b} - \alpha_e \frac{d_i}{\eta - \eta_{SP}} \sum_{o} \Lambda_{12}^{es} \frac{u_{2\parallel,s}}{B} \right] \quad : bootstrap \ current$$

$$\begin{split} \mathbf{I}_{\parallel} &= \frac{3}{2} \pi_{\parallel} \left[\mathbf{b} \mathbf{b} - \frac{1}{3} \mathbf{I} \right] &: stress \ tensor \ in \ CGL \ form \\ \pi_{\parallel,s} &= -\rho \alpha_{s} \mu_{s} C \left\{ \left[\mathbf{V}_{\mathbf{s}} + k_{s} \left(\mathbf{V}_{\mathbf{Ts}}^{*} + \frac{u_{\parallel 2,s}}{B^{2}} \mathbf{B} \right) \right] \cdot \nabla \ln B \\ &: pressure \ anisotropy \ (p_{//} - p_{\perp}) \\ &+ \frac{\mathbf{b}}{B} \cdot \left[\nabla \times (\mathbf{V}_{\mathbf{s}} \times \mathbf{B}) + k_{s} \nabla \times (\mathbf{V}_{\mathbf{Ts}}^{*} \times \mathbf{B}) \right] - k_{s} \mathbf{V}_{\mathbf{Ts}}^{*} \cdot \nabla \ln p_{s} \right\} \end{split}$$

Main properties

- Equilibrium flux averaged bootstrap current consistent with neoclassical theory [3]
- Agrees with analytical estimates [4]; contribution from parallel heat flows [fig.1]
- Non linear saturation is bursty at low dissipation (χ, ν) [fig.2]

Fig.7:Stabilization efficiency vs misalignment.

Fig.8 : θ - position of X-points vs time during flip instability.

Fig.9 : RF-driven island size vs RF deposition ($I_{RF}/I_{p}=0.75\%$).

Specific features with a 3D source : island adjusts its phase to enhance its growth

- Flip instability [6]: the X-point sets in close to the RF source (destabilizing) [fig.8]
- **RF-driven island : when close to a resonant surface, the RF current filament forms** the X-point of an island [fig.9]

Island control by ECCD: evaluating various strategies

- A basic controller has been implemented for radial sweep and modulation
- Radial sweep aimed at mitigating misalignment risk [7]: successfully tested on TCV and Asdex-Upgrade during the last MST1 campaigns [see overviews, this conf.]
- Modulation aimed at mitigating low efficiency associated with broad RF deposition
- **Evaluation of best strategy using the resistive MHD model [8]**

Preemption

Risk due to misalignment [9]: mitigation by radial sweep at the cost of a larger I_{RF} [fig.10]

bootstrap current

CEA, IRFM

at low χ , v with neoclassical model.

Fig.3 : Island shape with resistive, drift and neoclassical MHD models.

Comparison with Rutherford approach

- Effect of bootstrap current on saturation mitigated by ExB flow perturbation
- Measured by correlation $R_{bs}(p)$ between bootstrap and pressure perturbations
- Correlation $R_{bs}(p)$ increases with neoclassical friction μ_i and with island size [fig.4]
- In Rutherford representation, f_{bs} [=1 for reference case] replaced by R_{bs} (p) f_{bs}
- Still weaker effect compared with Rutherford prediction, even for an ad-hoc implementation of the bootstrap $J_{bs} \sim \nabla p$ where $R_{bs}(p)=1$

Application to Neoclassical Tearing Mode triggering on Asdex-Upgrade equilibrium

- Correlation $R_{bs}(p)$ varied by changing $\chi_{\prime\prime}$ (~pressure flattening inside the island)
- (3,2) NTM could be triggered for a seed W_{seed}~4%

Fig. 10 : Preemption capability as a function of RF current and sweep amplitude

	-	•	• •	•	•				
0	- 8			 I					-
	0		C	0.02			0.0	04	
	I _{RF} / I _P								

Stabilization (broad source, $\delta_{RF}/W=1.4$) [fig.11]

- Radial sweep : island reduction without misalignment risk, but less efficient than well positionned fixed source
- Combined with modulation : full stabilization obtained •
- Alternate modulation with the FADIS (FAst Directional Switch) method uses 2 antennae to obtain a nearly continuous O-point deposition [10]
- Quantification by a gain G and a characteristic time T_{min}

$$G = \frac{W_{sat} - W_{min}}{W_{sat} - W_0}$$
• W_{sat} : island size without control
• W_{min} : minimum width obtained
• W_0 : minimum width for fixed, CW source
• T_{min} : time for reaching W_{min}

- Overview of stabilization strategies [fig.12]
 - Island control achieved without misalignment risk
 - Large gain for modulation techniques
 - **Control time scale reduced with the FADIS alternate modulation scheme**

<u>Thin RF source ($\delta_{RF}/W=0.7$)</u>: results qualitatively similar, but no advantage to use modulation techniques (G~1) (see [8])

Work carried out within the framework of the EUROfusion Consortium ; funding from the Euratom research and training programme 2014-2018 (grant agreement No 633053) ; from Agence Nationale pour la Recherche (ANR-14-CE32-0004-01). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

> Numerical resources provided by GENCI (project no. 056348), Mésocentre of Aix-Marseille University (project no. 16b009), IFERC-CSC (project MaCoToP)

TH/ P1.11 – 26th IAEA Fusion Energy Conference, Kyoto, Japan

🛯 GENC

IFERC