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Synergetic effects of collisions, 

turbulence and sawtooth crashes 

on impurity transport. 
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Motivation : impurity transport 
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• Tungsten plasma facing 

components  → impurity 

accumulation in the core ?  

• Neoclassical and turbulence 

transport processes compete  

Casson 13, Angioni 14 

• Interplay with MHD events : 

tearing modes, ELMs, 

sawtooth crashes Hender 16, 

Sertoli 15 

Asdex Upgrade – tungsten 

density- Sertoli 15 

NW(r) 

After crash 

Before crash 

Normalized minor radius 



1) Interaction between turbulent and neoclassical 

transport. 

2) Interaction between sawtooth cycles and 

neoclassical transport. 

Punchline : interplay between different contributions to 

impurity transport are mediated by large scale flows 

 

Outline 

X. Garbet, 26th IAEA FEC, 21 Oct. 2016 |  PAGE 3 



• Gyrokinetic description (GYSELA code) : dtF=C(F) + Poisson 

equation→ neoclassical and turbulent transport Grandgirard 16 

• MHD equations (XTOR code) + impurity density and momentum 

equations Lütjens 10 

 

 

 

 

 

→  Pfirsch-Schlüter transport included in the fluid dynamics  

→ neoclassical and MHD transport 

Impurity transport modelled with 

gyrokinetics or MHD with closure  
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collisional friction 

force → 

neoclassical flux 

 pinch velocity 
 diffusion 



• Neoclassical flux 

 

 

• Pfirsch-Schlüter convection cell 

due to perpendicular 

compressibility Hinton & Hazeltine 76  

• controls  at high collisionality 

*Z>1 

Impurity neoclassical flux is related 

to parallel friction force 
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V//Z 

R 

Z 

// collisional 

friction force 



• Impurity collisional, ions weakly collisional→ H = -1/2  Hirshman 76 

• GYSELA benchmarked against theory and NEO code Belli 08 

Neoclassical thermal screening  

works against accumulation 
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 Thermal screening 

• General form of the impurity flux Hirshman & Sigmar 81 

 Accumulation 
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Neoclassical and turbulent transport 

processes are synergetic 
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• Neoclassical and turbulent contributions isolated by playing 

with collisionality and symmetries  

• Total flux ≠ neoclassical  + turbulent  

Neo. 

Neo. + Turb. 

Turb. 

Total 

Self-consistent 

(Tungsten) 

Impurity Fluxes 
(averaged on few tturb

correl) Turbulent, friction 

force R//Z=0 

Neoclassical R//Z≠0,  

axisymmetric n=0 

modes only 

Self-consistent R//Z≠0, 

all modes 
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Interplay is mediated  

by poloidal convective cells  
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• Turbulent Reynolds stress → poloidal convective cells  

• Poloidal asymmetries → change neoclassical impurity flux 

• // momentum transport, turbulence self-regulation Diamond 05 

R 

Z 

R 

Z n=0 impurity density 

Esteve 15 

n0 impurity 

density 



• Anti-correlation due to poloidal convective cells 

• Thermal screening factor H>-1/2 : consequence of static density 

poloidal asymmetries? Romanelli 98, Fülöp 99, Angioni 14, Breton 16 

Curvature and ExB fluxes are 

anticorrelated 
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Fast relaxation of the impurity density 

profile during a sawtooth crash 
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Ahn 16 
• Ni=0, Ti≠0 → screening 

• Crash time << collision 

time → neoclassical 

transport processes 

inefficient during crash  

• Post-crash profile 

consistent with Kadomtsev 

model Kadomtsev 75, Porcelli 96, 

Nicolas 15 

Before crash 
After crash 

NZ(r) 

Normalized minor radius 



ExB drift is the main cause of impurity 

transport during a sawtooth crash 
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time 

Impurity density and stream function 

Poincaré map of magnetic 

field lines 



ExB drift is the main cause of impurity 

transport during a sawtooth crash (cont.) 
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Impurity density and stream function 

• ExB impurity flux 10 flux due to magnetic flutter 

• Consistent with SXR measurements on TFTR Nagayama 91  



Sawteeth change the  

impurity profile on long time scales 
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• Neoclassical transport 

dominant during recovery 

phase, but ion temperature 

gradient is lower 

→ weaker thermal screening 

effect 

• Overall temperature profile 

flatter with sawteeth 

no sawteeth 

after 9 sawtooth crashes 

Normalized minor radius 

Initial profile 

Impurity density profile - Ahn 16 
 



Conclusion 
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• Interplay between turbulent and neoclassical transport 

processes:  

- poloidal convective cells generated by turbulence → poloidal 

asymmetries – total flux ≠ turbulent + neoclassical calculated 

separately. Should play at  low rotation speed (e.g. EAST, 

WEST, ITER) 

- thermal screening gets weaker 

• Sawteeth cycles affect neoclassical transport  

- crashes flatten impurity density profile + lower main ion 

temperature gradient → thermal screening less efficient 


