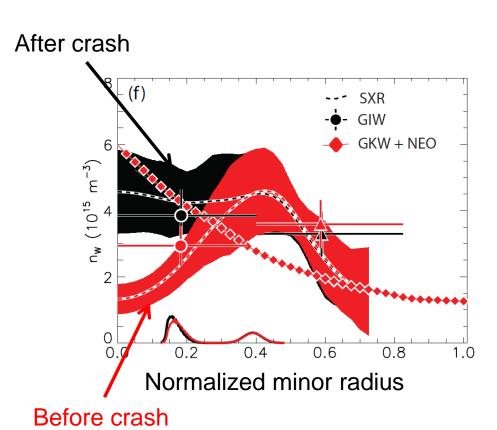


Synergetic effects of collisions, turbulence and sawtooth crashes on impurity transport.

X. Garbet¹, J.H. Ahn¹, S. Breton¹, P. Donnel¹, D. Esteve¹, R.Guirlet¹, H.Lütjens², T. Nicolas³, Y. Sarazin¹, C. Bourdelle¹, O. Février¹, G. Dif-Pradalier¹, P. Ghendrih¹, V. Grandgirard¹, G.Latu¹, J.F. Luciani², P.Maget¹, A. Marx², A. Smolyakov⁴


- 1) CEA, IRFM, F-13108 Saint Paul-lez-Durance, France
- 2) Centre de Physique Théorique, Ecole Polytechnique, CNRS, Palaiseau, France
- 3) Swiss Plasma Center, Switzerland
- 4) University of Saskatchewan, Saskatoon, Canada

Motivation: impurity transport

- Tungsten plasma facing components → impurity accumulation in the core ?
- Neoclassical and turbulence transport processes compete Casson 13, Angioni 14
- Interplay with MHD events:
 tearing modes, ELMs,
 sawtooth crashes Hender 16,
 Sertoli 15

Asdex Upgrade – tungsten density- Sertoli 15

Outline

- Interaction between turbulent and neoclassical transport.
- Interaction between sawtooth cycles and neoclassical transport.

Punchline: interplay between different contributions to impurity transport are mediated by large scale flows

Impurity transport modelled with gyrokinetics or MHD with closure

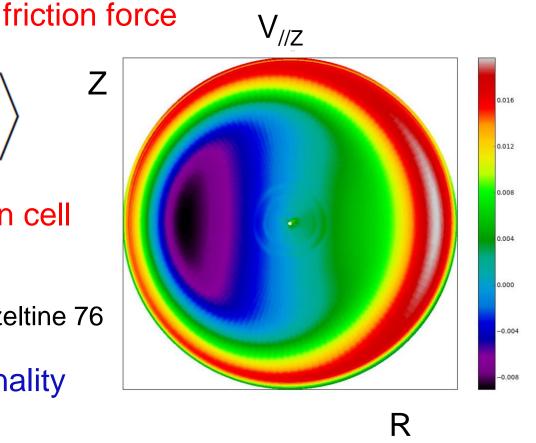
- Gyrokinetic description (GYSELA code): d_tF=C(F) + Poisson equation→ neoclassical and turbulent transport Grandgirard 16
- MHD equations (XTOR code) + impurity density and momentum equations Lütjens 10

 pinch velocity

$$\frac{\partial N}{\partial t} + \nabla \cdot (N\mathbf{V}) = \nabla \cdot (D\nabla N - V)$$
 collisional friction force \rightarrow neoclassical flux
$$Nm\left(\frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla\right)\mathbf{V} = Ne\left(\mathbf{E} + \mathbf{V} \times \mathbf{B}\right) - \nabla \cdot \mathbf{\Pi} + \mathbf{R}$$

- → Pfirsch-Schlüter transport included in the fluid dynamics
- → neoclassical and MHD transport

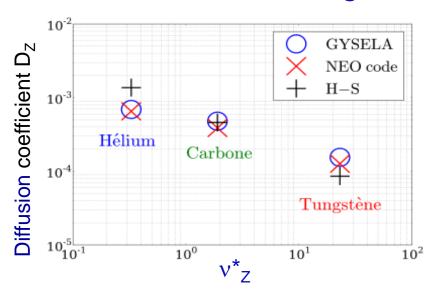
Impurity neoclassical flux is related to parallel friction force


// collisional

Neoclassical flux

$$\Gamma^{\psi} = -\frac{B_T R}{Ze} \left\langle \begin{array}{c} R_{\parallel} \\ B \end{array} \right\rangle$$

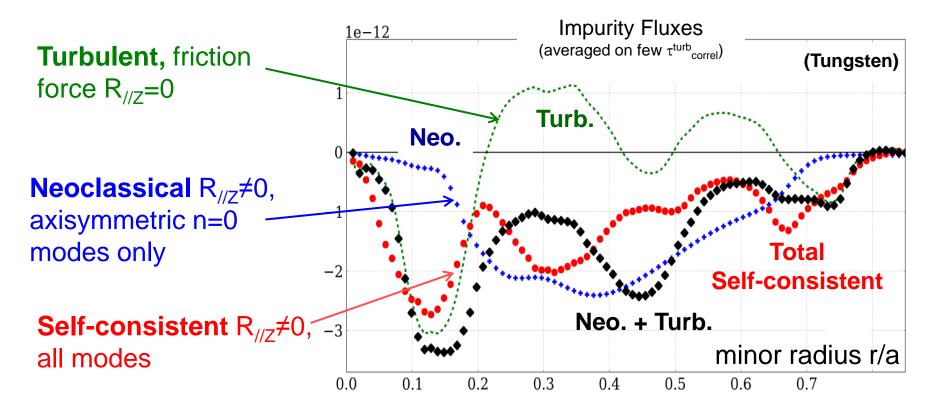
- Pfirsch-Schlüter convection cell due to perpendicular compressibility Hinton & Hazeltine 76
- controls Γ^Ψ at high collisionality
 v*₇>1


Neoclassical thermal screening works against accumulation

General form of the impurity flux Hirshman & Sigmar 81

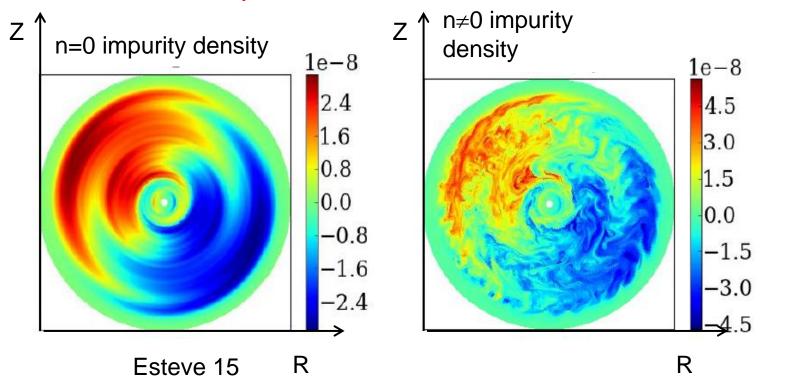
$$\frac{\Gamma_{Z\psi}}{D_{neo}N_Z} = -\frac{\partial \ln N_Z}{\partial r} + Z\frac{\partial \ln N_i}{\partial r} + HZ\frac{\partial \ln T_i}{\partial r}$$
 Accumulation Thermal screening

- Impurity collisional, ions weakly collisional → H = -1/2 Hirshman 76
- GYSELA benchmarked against theory and NEO code Belli 08



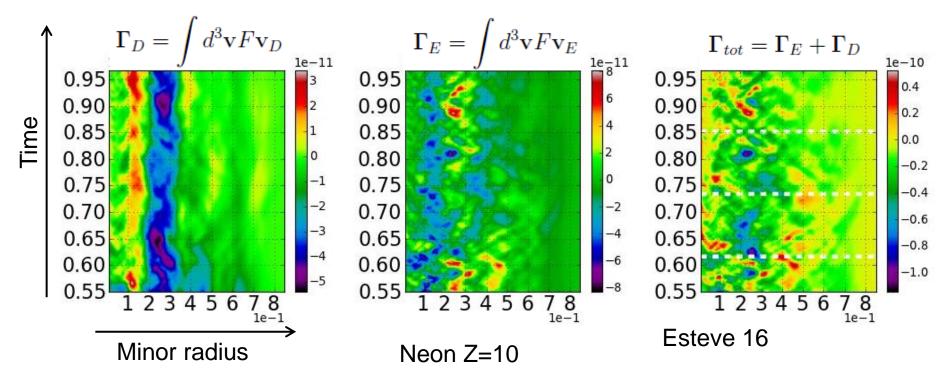
Neoclassical and turbulent transport processes are synergetic

- Neoclassical and turbulent contributions isolated by playing with collisionality and symmetries
- Total flux ≠ neoclassical + turbulent



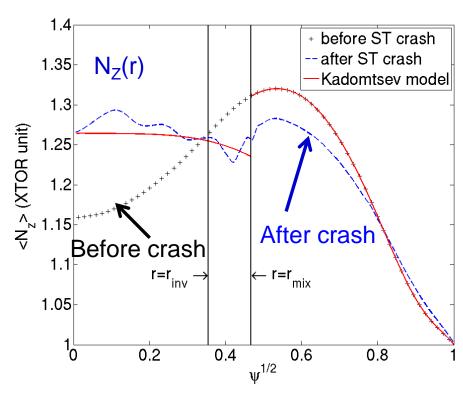
Interplay is mediated by poloidal convective cells

- Turbulent Reynolds stress → poloidal convective cells
- Poloidal asymmetries → change neoclassical impurity flux
- // momentum transport, turbulence self-regulation Diamond 05



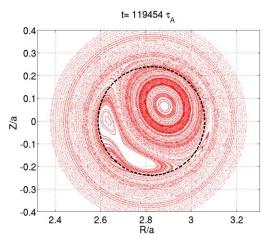
Curvature and ExB fluxes are anticorrelated

- Anti-correlation due to poloidal convective cells
- Thermal screening factor H>-1/2: consequence of static density poloidal asymmetries? Romanelli 98, Fülöp 99, Angioni 14, Breton 16



Fast relaxation of the impurity density profile during a sawtooth crash

- $\nabla N_i = 0$, $\nabla T_i \neq 0 \rightarrow$ screening
- Crash time << collision time → neoclassical transport processes inefficient during crash
- Post-crash profile
 consistent with Kadomtsev
 model Kadomtsev 75, Porcelli 96,
 Nicolas 15



Normalized minor radius

ExB drift is the main cause of impurity transport during a sawtooth crash

t= 120198 τ_A

0.4

0.3

0.2

0.1

-0.1

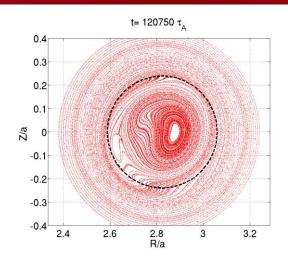
-0.2

-0.3

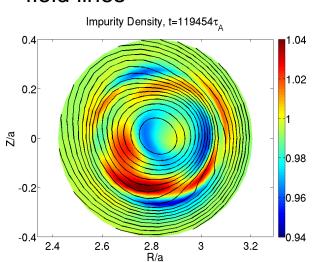
-0.4

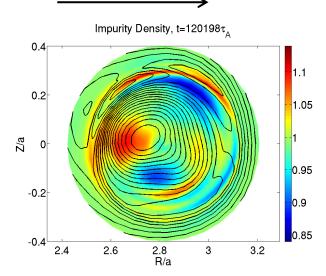
2.4

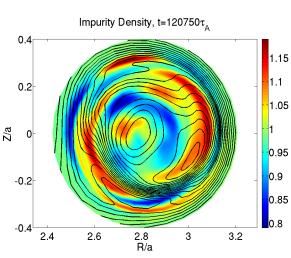
2.6


2.8

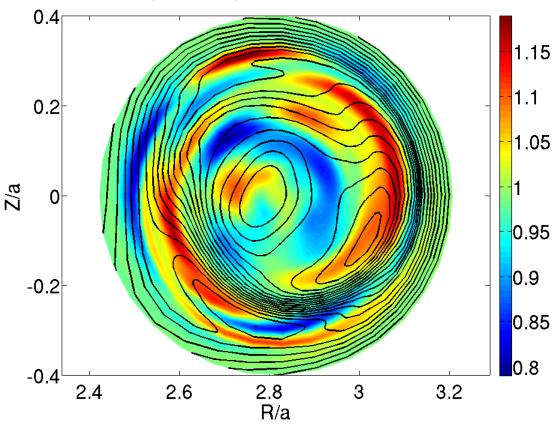
8/a


3

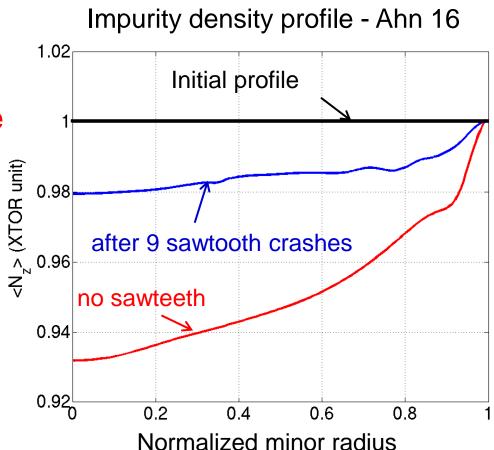

3.2


time

Poincaré map of magnetic field lines


Impurity density and stream function

ExB drift is the main cause of impurity transport during a sawtooth crash (cont.)


- ExB impurity flux ~10 flux due to magnetic flutter
- Consistent with SXR measurements on TFTR Nagayama 91

Sawteeth change the impurity profile on long time scales

- Neoclassical transport
 dominant during recovery
 phase, but ion temperature
 gradient is lower
- → weaker thermal screening effect
- Overall temperature profile flatter with sawteeth

Conclusion

- Interplay between turbulent and neoclassical transport processes:
- poloidal convective cells generated by turbulence → poloidal asymmetries – total flux ≠ turbulent + neoclassical calculated separately. Should play at low rotation speed (e.g. EAST, WEST, ITER)
- thermal screening gets weaker
- Sawteeth cycles affect neoclassical transport
- crashes flatten impurity density profile + lower main ion temperature gradient → thermal screening less efficient