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asymmetries near peak convergence in NIF implosions
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Summary

Measured neutron spectra indicate substantial bulk-plasma motion and low-
mode areal-density (ρR) asymmetries near peak convergence in NIF implosions
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• Difference between the observed DT and DD apparent ion temperature (“Ti”) increases with
increasing implosion velocity and kinetic energy in the system.

• 2D simulations cannot describe the neutron data for implosion velocities > 340 km/s (when “Ti” is
above 4 keV).

• Neutron data indicate substantial low-mode ρR asymmetries near peak convergence with regions of
high ρR values at the poles or near the fill tube depending on experiment.

• 3D simulations indicate that these asymmetries prevent efficient conversion of implosion kinetic
energy to thermal energy, resulting in substantial and bulk-plasma motion near peak convergence.

• Tent, fill tube and Hohlraum drive asymmetries are the largest performance degradation sources,
which are being addressed by implementing new engineering solutions, more refined modeling and
new diagnostics.



Experiments

Data will be shown from two implosion campaigns, which used
a wide range of experimental configurations1-2)
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Laser energy: 0.7–1.7 MJ
Laser power: 290–435 TW
Implosion velocity: 300–390 km/s
Capsule ablator: 165–195 um thick CH or HDC
Holhraum diameter: 5.75–6.72 mm

1) Edwards et al., POP (2013). 
2) Hurricane et al., Nature Physics (2016).
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Five neutron spectrometers, positioned at various locations in the NIF target 
bay, have been used extensively to diagnose the implosions1-2)

Neutron diagnostics
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19 Zirconium-Activation Detectors3) positioned at 
different locations on the NIF target chamber have 
also been used to  measure relative/directional 
yield of un-scattered primary neutrons

1) Clancy et al., SPIE (2013). 
2) Frenje et al., POP (2010).
3) Yeamans et al., RSI (2015).
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From measured neutron spectra, yield (Yn),  apparent ion temperature (“Ti”), 
areal density (ρR), bulk-plasma flows, and their asymmetries are determined1-3)

Neutron spectrum
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ΔE is affected by: 1.  Plasma flows
2.  Thermal temperature

Yn (DT) : From spectrum 13–15 MeV
Yn (DD) : From spectrum 2.2–2.7 MeV
ρR :  From DSR = Yn(10–12 MeV)/Yn(13–15 MeV) 
Flows : From Eshift (beyond Ti-induced shift)
“Ti”:  From ΔE

Variance in bulk-plasma velocity4-5)
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The difference between measured DT and DD “Ti” (ΔTi ) increases
with increasing implosion velocity1-2)

Apparent ion temperatures and plasma flows
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• The DD reactivity emphasizes cooler regions more 
than the DT reactivity.

• The DT reaction kinematics emphasize plasma flows 
more than DD.

• If ΔTi is due to plasma flows, a Tthermal of ~2 keV is 
inferred, which is too low to reproduce measured Yn
unless fuel density is much higher than measured.

1) Gatu Johnson et al., PRE (2016).
2) Kritcher et al., POP (2016). 

Substantial 3D effects combined with 
bulk-plasma flows must be invoked in 
the interpretation of the data
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Significant discrepancies between data and 2D simulations are observed
for implosion velocities > 340 km/s (when “Ti” is above 4 keV)

Apparent ion temperatures and ρR
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1) Kritcher et al., POP (2016). 

Tent and fill tube are NOT considered in these 2D simulations, and an another indication that engineering 
features and 3D effects are becoming increasingly important with increasing implosion velocity
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3D asymmetries prevent efficient conversion of implosion kinetic energy to 
thermal energy, resulting in Residual Kinetic Energy (RKE) and reduced Yn

1)

Residual Kinetic Energy (RKE) and neutron yield
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This indicates that RKE also becomes more 
significant with increasing implosion velocity

1) Kritcher et al., POP (2016).
2) Weber et al., POP (2015).
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The neutron-spectral data also indicate substantial RKE and bulk-plasma flows, 
but insignificant Lines-Of-Sight (LOS) variation in “Ti”-DT

Bulk-plasma flows
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1) Gatu Johnson et al., PRE (2016).
2) Chittenden et al., POP (2016).
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integrated neutron spectra in which the combined effects appear isotropic2)



N160120 – HDC-capsule implosion

The Zirconium-activation detectors1) often show low-mode ρR asymmetries 
with high ρR values near the fill tube or the poles depending on experiment

Low-mode ρR asymmetries
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1) Yeamans et al., RSI (2012).

HDC implosions are generally more symmetrically driven than CH implosions (larger Hohlraum-
to-capsule ratio, lower Hohlraum-gas fill, shorter pulses), which is why we predominantly see 
the fill-tube-induced high-ρR feature rather than high-ρR polar features in the CH implosions

N150115 – CH-capsule implosion 

0.90 0.95 1.00 1.05 1.10
Yn / Yn (average)

-500 mg/cm2+500 mg/cm2 L < 2 spherical harmonics 
fits to data

Near fill tube



3D simulations provide a fair representation of the implosions
but do not capture all experimental trends1)

3D simulations
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N130927
(380 TW, 195 μm ablator) 

N140120
(390 TW, 175 um ablator)

• 3D simulations are still low in “Ti” and high in ρR.
• The hypothesis is that the tent, fill tube and time-dependent Hohlraum

drive asymmetries are the largest performance degradation sources. 
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Fill-tube 
defect

Tent 
defect

Fill-tube 
defect



The performance degradation issue is being addressed by implementing
new engineering solutions, more refined modeling, and new diagnostics

Path forward
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Some new diagnostics:

• 30 additional Zirconium-activation detectors will resolve the fuel ρR distribution up to mode 
L=41), compared to the current limit of L=2. 

• The Magnet Recoil Spectrometer (MRSt) for time-resolved measurements of neutron spectrum 
from which Yn(t), “Ti(t)”, ρR(t), and VCM(t) 2).

• Antipodal neutron-Time-Of-Flight spectrometers for high-precision measurements of VCM
3).

• A Ross-pair spectrometer for measurements of the x-ray continuum slope from which an 
emissivity-weighted Te can be determined and contrasted to the apparent Ti

4).

• Time-resolved Compton radiography to measure shape, ρR distribution, and RKE of the 
surrounding layer of dense fuel5).

1) Yeamans, private communication (2016).
2) Frenje et al., RSI (2016).
3) Kilkenny et al., BAPS DPP (2014).
4) Jarrot et al., RSI (2016).
5) Hall et al., RSI (2016).



Summary

Measured neutron spectra indicate substantial bulk-plasma motion and low-
mode areal-density (ρR) asymmetries near peak convergence in NIF implosions
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• Difference between the observed DT and DD apparent ion temperature (“Ti”) increases with
increasing implosion velocity and kinetic energy in the system.

• 2D simulations cannot describe the neutron data for implosion velocities > 340 km/s (when “Ti” is
above 4 keV).

• Neutron data indicate substantial low-mode ρR asymmetries near peak convergence with regions of
high ρR values at the poles or near the fill tube depending on experiment.

• 3D simulations indicate that these asymmetries prevent efficient conversion of implosion kinetic
energy to thermal energy, resulting in substantial and bulk-plasma motion near peak convergence.

• Tent, fill tube and Hohlraum drive asymmetries are the largest performance degradation sources,
which are being addressed by implementing new engineering solutions, more refined modeling and
new diagnostics.
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