DIII-D Research Advancing the Scientific Basis for Burning Plasmas and Fusion Energy

by W.M. Solomon for the DIII-D Team

Presented at the 26th IAEA Fusion Energy Conference Kyoto, Japan

October 17-22, 2016

DIII-D Advances Fusion Energy Development By Focusing on Four Research Elements

DIII-D Research Elements

Control Transient Behavior

Develop Relevant Boundary Solutions

Plasma Exhaust

Strengthen the Basis of Fusion Science

Determine Path to Steady-State

DIII-D Advances Fusion Energy Development By Focusing on Four Research Elements

DIII-D Research Elements

Control Transient Behavior

- Disruption mitigation
- Low torque stability
- ELM control

Develop Relevant Boundary Solutions

Strengthen the Basis of Fusion Science

Determine Path to Steady-State

ITER

Plasma Exhaust

DIII-D Is Uniquely Equipped with Primary Disruption Mitigator for ITER: Shattered Pellet Injection (SPI)

- Large cryogenic pellet shattered in guide tube provides pulse of tiny solid shards
- Varying deuterium / neon mix provides control of disruption characteristics
- Achieved first demonstration of runaway electron plateau dissipation with SPI

Increases confidence that SPI will be an effective disruption mitigation tool for ITER

Gamma Ray Spectroscopy Reveals Growth of High Energy Runaway Electrons (REs) Matches Theory

- High energy REs grow with electric fields E/E_{crit}~2
 - Theory predicts growth at E/E_{crit}~1.6
- Lower energy RE growth at higher E/E_{crit}~5
 - Similar to previous HXR measurements

More destructive high energy REs are more difficult to dissipate → better to prevent initial growth

MHD Spectroscopy Used to Identify the Approach to Instability in Low Torque ITER Baseline

- ITER baseline typically characterized by 2/1 tearing modes that lock at low torque
- Plasma response amplitude increases as rotation is reduced

Turco – EXP/3-14

MHD Spectroscopy Used to Identify the Approach to Instability in Low Torque ITER Baseline

- ITER baseline typically characterized by 2/1 tearing modes that lock at low torque
- Plasma response amplitude increases as rotation is reduced
- Onset of 2/1 instability preceded by increase in plasma response

Potential to use real-time measured change in plasma response as part of disruption warning system

Turco – EXP/3-14

ELM Suppression in ITER Baseline Associated with Low Collisionality Edge Mode on High Field Side (HFS)

- HFS response measurement strongest at low collisionality
- Control of applied mode spectrum important to optimize response for ELM suppression

Importance of enhanced response at low collisionality confirmed by ELM suppression on ASDEX-Upgrade → favorable for ITER

Discovered Stationary Quiescent H-mode Plasmas with Zero Net NBI Torque and High Energy Confinement

- New state with increased pedestal height, width and confinement
- Bifurcation to new regime triggered using torque ramp down
- Associated with changes in ExB shear and increased edge fluctuations

Exciting potential solution to high performance low torque ELM control

W.M. Solomon / IAEA16 / October 2016

Chen – EX/3-2

DIII-D Advances Fusion Energy Development By Focusing on Four Research Elements

DIII-D Research Elements

Develop Relevant Boundary Solutions

- Divertor drifts
- Radiation shortfall
- 3D divertor heat fluxes

Strengthen the Basis of Fusion Science

Determine Path to Steady-State

Drifts Affect Divertor Asymmetries and Detachment Threshold

• Inner divertor exhibits higher n_e and lower T_e for normal B_T direction

Drifts Affect Divertor Asymmetries and Detachment Threshold

- Inner divertor exhibits higher n_e and lower T_e for normal B_T direction
 - Reversing B_T mitigates in-out asymmetry

11

Drifts Affect Divertor Asymmetries and Detachment Threshold

- Inner divertor exhibits higher n_e and lower T_e for normal B_T direction
 - Reversing B_T mitigates in-out asymmetry
- Reverse B_T lowers density for detachment in H-mode
- Effects understood due to interplay between radial and poloidal ExB drifts

- Reproduced qualitatively in UEDGE simulations with full cross-field drifts

Future divertor designs can be better optimized by accounting for asymmetries due to drifts

Radiation "Shortfall" Caused by Under-Prediction of the Divertor Density and Uncertain Atomic Physics

 SOLPS and UEDGE modeling of D+C plasmas show significant "shortfall" in radiated power

Radiation "Shortfall" Caused by Under-Prediction of the Divertor Density and Uncertain Atomic Physics

- SOLPS and UEDGE modeling of D+C plasmas show significant "shortfall" in radiated power
- Shortfall can be reduced by matching the X-point density measured by DTS
 - Usual approach matches upstream density

Radiation "Shortfall" Caused by Under-Prediction of the Divertor Density and Uncertain Atomic Physics

- SOLPS and UEDGE modeling of D+C plasmas show significant "shortfall" in radiated power
- Shortfall can be reduced by matching the X-point density measured by DTS
 - Usual approach matches upstream density
- Shortfall eliminated in helium plasmas
 - No uncertainties in hydrocarbon reactions

Highlights need to improve D atomic and molecular physics and parallel transport model in the divertor

Spatial Extent of Divertor Electron Temperature Lobes Due to RMP Are Reduced at High Density

- At moderate density, lobes in T_e extend to the divertor plates, heat flux profile also shows 3D structure
- At higher core densities these lobes shrink and move away from target
 - Before partial detachment and continuing through to detachment
 - May be sensitive to poloidal spectrum and plasma response

Partial detachment of divertor may be sufficient to eliminate non-axisymmetric heat flux striations in ITER

> Briesemeister – EX/7-3Rb Lore - TH/P6-12

Experiments with Tungsten Rings Reveals Metal Influx Is Predominantly from Strike Point Location

 Different W isotopes isolate strikepoint from divertor shelf

Experiments with Tungsten Rings Reveals Metal Influx Is Predominantly from Strike Point Location

- Different W isotopes isolate strikepoint from divertor shelf
- Little contribution of W182 from shelf tile in high power H-mode

Suggests control of strikepoint flux is key to limiting core contamination

Two rings of W Tiles

Shelf:

16

DIII-D Advances Fusion Energy Development By Focusing on Four Research Elements

DIII-D Research Elements

- **Control Transient Behavior**
- **Develop Relevant Boundary Solutions**

Strengthen the Basis of Fusion Science

- Intrinsic rotation drive
- Particle transport
- Stiffness
- LH physics

Determine Path to Steady-State

ρ^{*} Scaling of Intrinsic Drive Projects to a Torque Comparable to that from Neutral Beams on ITER

- Experimental scaling determined in joint study with JET
 - Favorable scaling still leads to relatively low level of rotation
- Simulations with GTS gyro-kinetic code reproduces reversal of core intrinsic rotation

Increase in Density Profile Peaking at Low Collisionality Appears Due to Changes in Beam Fueling

 Increase density peaking observed in dimensionless collisionality scaling experiment

Mordijck – EX/P3-9

Increase in Density Profile Peaking at Low Collisionality Appears Due to Changes in Beam Fueling

 Increase density peaking observed in dimensionless collisionality scaling experiment

- Change in peaking is reproduced by changes in core fueling only
 - Assuming no change in normalized transport from high collisionality case

Database scalings may be too optimistic for density peaking in ITER

Mordijck – EX/P3-9

Ion Stiffness Does Not Clamp Ion Temperature Gradient in Power Scans

 Stiffness paradigm is large incremental transport above critical gradient

Ion Stiffness Does Not Clamp Ion Temperature Gradient in Power Scans

- Stiffness paradigm is large incremental transport above critical gradient
- Ion thermal diffusivity drops with increasing power

Ion Stiffness Does Not Clamp Ion Temperature Gradient in Power Scans

- Stiffness paradigm is large incremental transport above critical gradient
- Ion thermal diffusivity drops with increasing power
- Stiffness not observed because temperature is not kept constant

Suggests fusion gain will increase with heating more than stiffness would imply

Theory-Experiment Validation Has Increased Confidence in ITER Achieving its Q=10 mission

- Self-consistent coupling of core & pedestal theoretical models
 - No free or fit parameters
- Whole profile iteration converges
 to unique solution
 - Predicts β_N to ~15% in 200 DIII-D cases
- Enables prediction and optimization of ITER fusion gain: Q~12 possible

New frontier: Multi-scale turbulence simulations and TGLF improvement

Meneghini – TH/9-1 Holland– TH/6-1

Staebler – TH/P2-8

Dual Mode Nature of Edge Turbulence May Explain Isotope and Density Scaling of L-H Power Threshold

- Counter-propagating turbulence modes appear to interact to increase turbulent Reynolds stress driven phase velocity shear
- Increased shear facilitates L-H transition

Yan – EX/5-1 Schmitz – EX/P3-11

(kHz)

-0.3-0.2-0.10.0 0.1 0.2 0. k_g (1/cm)

-0.3-0.2-0.10.0 0.1 0.2 0.3 k_g (1/cm)

W.M. Solomon / IAEA16 / October 2016

DIII-D Advances Fusion Energy Development By Focusing on Four Research Elements

DIII-D Research Elements

Control Transient Behavior

Develop Relevant Boundary Solutions

Plasma Exhaust

Strengthen the Basis of Fusion Science

Determine Path to Steady-State

- Shafranov shift stabilization
- Fast ion transport
- Core-edge integration

Excellent Confinement in High β_P Scenario Is Due to Shafranov Shift Stabilization

W.M. Solomon / IAEA16 / October 2016

Large radius ITB and excellent confinement maintained at reduced rotation or q_{95}

if high confinement

Qian – EX/4-2

29

Incorporating Negative Central Shear Mitigates Confinement Degradation with Increasing T_e/T_i

 Plasmas with standard positive shear (PS) show reduced T_i when ECH power added

 Increase in T_e/T_i has less impact on fluctuation levels with negative central shear (NCS)

Advanced scenarios can maintain performance in burning plasma relevant conditions

Yoshida – EX/8-1

Fast Ion Transport Exhibits a Critical-Gradient Like Behavior Driven by Overlap of Multiple Unstable Modes

• Rapid increase in fast ion flux above threshold in beam power

 Intermittent bursts of losses observed above threshold

Large Impact of ECH on Alfvén Eigenmode (AE) Activity in DIII-D Plasmas Explained by Finite Temperature Effects

Suggests tailoring of temperature profile can control RSAE-driven transport

- ECH drastically alters AE activity
 - Reverse Shear AE (RSAEs) particularly sensitive
- RSAEs exist between a minimum frequency and the TAE frequency
 - Temperature gradient and elongation modify minimum frequency
 - $f_{\text{RSAE-min}}^2 = (f_{\text{GAM}}^2 + f_{\nabla}^2)$ $f_{\text{GAM}}^2 \propto T_e \qquad f_{\nabla}^2 \propto \nabla T_e$
- Including these effects correctly predicts existence and evolution of RSAEs

ELM Suppression Achieved in ≈1 MA Fully Non-Inductive Hybrid with Minimal Impact on Performance

- High β_N + bootstrap, and coupling to weakly stable edge kink mode gives stronger response than in **ITER** baseline
 - Wider q_{95} range (6-7.5) for suppression
 - ~5% reduction in H₉₈
- Separately, "puff-and-pump" radiative divertor halved peak divertor heat flux
 - Again little change in confinement (~10%)

Petty – EX/4-1 Petrie – EX/P3-27

W.M. Solomon / IAEA16 / October 2016

robust in steady-state scenarios

Future DIII-D Enhancements Provide Flexibility to Continue to Address these Key Issues

DIII-D Research Elements Enabled by DIII-D Enhancements

DIII-D Has Advanced the Scientific Basis for Fusion Energy: Preparing for ITER and Laying the Foundation for Steady-State

- Increased confidence in our ability to handle and control transients (disruption mitigation, ELM suppression, QH-mode)
- Improved understanding of processes relevant to divertor dynamics (drifts, radiation shortfall)
- Key advances in understanding in momentum, particle and thermal transport
- Extended steady-state scenarios to more reactor relevant regimes (rotation, Te/Ti) and integrated boundary physics solutions (ELM-suppression and radiative divertor)

