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Abstract:

In this study, the maximum achievable elongation in a tokamak as determined theoreti-
cally by the n=0 MHD resistive wall mode is investigated theoretically. A highly elongated
plasma is desirable in order to increase plasma pressure and energy confinement to maximize
fusion power output. However, there is a limit to the maximum achievable elongation which
is set by vertical instabilities driven by the n=0 MHD mode. This limit can be increased by
optimizing several parameters characterizing the plasma and the wall. The purpose of our
study is to explore how and to what extent this can be done. Specifically, we extend many
earlier calculations of the n=0 mode to determine the maximum elongation as a function of
dimensionless parameters describing (1) the plasma profile (βp and li), (2) the plasma shape
(ε and δ), (3) the wall radius (b/a) and (4) most importantly the feedback system capability
parameter γτ . We make use of a new formulation of n=0 MHD theory developed in our
recent study [Freidberg et. al. 2015; Lee et. al. 2015] that reduces the 2-D stability problem
into a 1-D problem. This method includes all the physics of the ideal MHD axisymmetric
instability but it reduces the computation time significantly so that many parameters can
be explored during the optimization process. We have explored a wide range of parameter
space to find the optimized shape against n=0 mode. Perhaps the most useful final result
is a simple analytic fit to the simulations which gives the maximum elongation and cor-
responding optimized triangularity as functions κ(ε, βp, li, b/a, γτ) and δ(ε, βp, li, b/a, γτ).
These theoretically obtained scaling relations can be useful for determining optimum plasma
shape in current experiments and future tokamak designs.

1 Introduction

A highly elongated tokamak is desirable in order to increase plasma pressure and energy
confinement, as verified in many experiments [1] and numerical simulations [2]. In the
design of ITER, the confinement time τE was estimated by experimentally derived empir-
ical scaling relations. These relations, plus the well-known Troyon MHD beta limit, show
a strong dependency on the elongation parameter κ (i.e. τE ∝ κ0.7 [3] and β ∝ (1 + κ2)
[4]). The maximum value of elongation is likely limited by axisymmetric (n=0) MHD
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resistive wall modes, which drive the vertical instability. However, the maximally achiev-
able elongation is not well formulated theoretically, particularly when the properties of
the feedback system are included. In this study, we derive analytical scaling relations for
the maximum elongation against n=0 mode in terms of the critical physics and engineer-
ing parameters. The analysis is based on the theory and numerical method developed
recently [5, 6].

There have been many numerical investigations of the n=0 MHD stability using dif-
ferent models (e.g. plasma surrounded by a perfectly conducting wall [7] or by a resistive
wall [8]). However, these studies do not directly include the impact of the feedback sys-
tem. In our analysis, the realistic engineering system controlling the vertical instability
in experiments is modeled by the introduction of a feedback parameter γτ [5]. A new
numerical formulation has been developed [6] to efficiently compute the instability mak-
ing use of the new theory including the resistive wall plus the parameter γτ [5]. Because
our numerical formation reduces the 2-D stability problem to an equivalent 1-D prob-
lem, it is computationally inexpensive thus allowing us to explore several dimensions in
multi-parameter space and obtain the analytic scaling relations by running thousands of
simulations.

A key additional feature of the present simulations as compared to the previous studies
in [6] is the generalization of the plasma equilibrium density and pressure profiles as
inputs to the simulations. In [5, 6], the plasma profiles are restricted to the simple
”Solov’ev profile” which is a purely analytical model [9]. However, the Solov’ev pressure
and current profiles are somewhat flat radially compared to typical experimentally profiles.
Specifically, the Solov’ev profile has an internal inductance of about li ' 0.4, which is
considerably smaller than the typical experimentally measured profiles characterized by
li > 0.7. For arbitrary plasma profiles we use the iterative solver for second-order elliptic
partial differential equation, ECOM [10], to calculate the equilibrium poloidal magnetic
flux Ψ satisfying the Grad-Shafranov equation,
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and the perturbed poloidal magnetic flux ψ satisfying the following equation,
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By computing numerical solutions for ψ and its normal derivative n · ∇ψ at the plasma
boundary for each poloidal Fourier mode, we can use the general formulation in [6] for
δW = 0 for arbitrary plasma profiles. If m is the number of poloidal Fourier modes
used to decompose the perturbed flux ψ, the computational cost is about m times larger
than that of Solov’ev equilibrium in [5]. Nevertheless, the stability formulation still only
requires the solution to two 1-D problems at the two radial interfaces (plasma-vacuum and
vacuum-wall). Thus, it is much more efficient than solving the full 2-D stability problems
directly.
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As described in [6], we find a set of parameters which satisfy δW = 0 including
the feedback control parameter γτ . Using this set of parameters, the maximum elonga-
tion κ can be determined numerically in terms of the following six critical dimension-
less physics parameters: (1) beta poloidal (βp = 2µ0

∫
V
pdr/B2

p), (2) internal inductance
(li = 2

∫
V
B2
pdr/(µ

2
0I

2
φR0)), (3) inverse aspect ratio (ε), (4) triangularity (δ), (5) the ratio

of wall radius to the plasma radius (b/a) and (6) the feedback system performance pa-
rameter γτ . Here, the parameters for the shape (κ, δ, and ε) follow the definitions in [11].
For simplicity, we change the size of the wall distance by varying only one parameter ∆o

defined by b/a = (1 + ∆o). We fix the shape of the wall relative to the plasma interface
shape by keeping the ratio of gaps in each direction ∆o = ∆i = (1/3)∆v constant: these
ratios are similar to those of many existing tokamak wall shapes [6]. Here ∆o, ∆i and ∆v

are the outer, inner, and vertical gap between the plasmas and wall, respectively.
In Section 2, we describe how to select an accurate but simple fitting model for

κ(βp, li, ε, δ, b/a, γτ). In Section 3, the analytic scaling results are presented and some
remarkable features of the scaling laws are discussed in Section 4.

2 Scaling model

To reduce the parameter space in the scaling relation, we prefix the triangularity by
δ = δm in the model. As has been shown in [6], the maximum stable elongation usually
occurs at an optimized value of triangularity. However, some comments are in order. (1)
While there is an optimum δ, the corresponding κmax is somewhat flat. Thus κmax is
only slightly sensitive to the value of δ. (2) In general, the optimum δ increases with ε,
βp, and li. Eventually, a sufficiently large value of any of these parameters leads to an
optimum δ ' 0.8. When this occurs, the well-known Miller cross section [11] used in the
simulations breaks down in the sense that the plasma shape no longer remains convex -
it assumes instead a bean shape. To avoid this difficulty, when the critical δ exceeds 0.7,
we simply fix δm at this value. This also helps because our equilibrium solver starts to
loose accuracy at large value of δ [10]. To summarize, when the optimum δ is less than
0.7, we use δm = δopt to calculate κmax . When δopt approaches and attempts to exceed
the value 0.7, we set δm = 0.7. In view of the flatness of the δopt curve this should not
lead to a significant error.

In this section, for the clarity of the presentation, we discuss the scaling models without
specifying the numerical values for the various factors and exponents. In section 3, we
will then specify all the coefficients and exponents we obtained from many simulations.

2.1 The optimum triangularity

Based on the discussion above, we model the dependency of κ on δ by a quadratic form
for simplicity,

κ =

{
κmax − κδ(δ − δm)2 for δm = δopt ≤ 0.7

κmax for δm = 0.7 < δopt.
(3)
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Here the optimal triangularity δopt, the coefficient κopt as well as κmax have substantial
dependence on ε, li, βp, ∆o, and γτ . The existence of the optimal triangularity is largely
due to the competing effects between the pressure driven term and the line bending term
in δW , which are sensitive to the plasma profiles. From our simulation results we have
found that a good fit to the numerical data for the triangularity coefficients is given by

δopt = δ̂lα1
i β

α2
p ε

α3 ,

κδ = κ̂lβ1i β
β2
p ε

β3 , (4)

where α3(li, βp, γτ,∆o) = α4 + α5li + α6βp + α7(γτ) + α8(1 + ∆o) and β3(li, βp, γτ,∆o) =
β4 + β5li + β6βp + β7(γτ) + β8(1 + ∆o). Note the complex behavior of the ε coefficient.
Also keep in mind that these relations are valid for δopt ≤ 0.7.

2.2 The large aspect ratio dependence of the maximum elonga-
tion

Let us now assume that the triangularity has been set to its optimum value as defined
in Eq. (3). We turn our attention to the important question of the maximum achievable
elongation, that is, the value of κmax. Our numerical results show that the maximum
elongation at the optimal triangularity κmax can be accurately modeled by

κmax = κ0 + κ1

(
2ε

1 + ε2

)2

. (5)

Consider first the coefficient κ0 which represents the maximum elongation in the limit of
large aspect ratio. In this limit, when the wall is at infinity, the optimal shape approaches
a circle corresponding to δopt → 0 and κ0 = 1. Mathematically, the wall can be moved to
infinity several ways: ∆o →∞, li →∞, and γτ → 0. For finite values of these parameters
a good fit to the numerical simulations is obtained by assuming that κ0 scales as

κ0 = 1.0 + κ̂0
(γτ)ν1

lν2i (1 + ∆o)ν3
. (6)

Note that the dependence of κ0 on βp is very weak and can be ignored with a minimal
loss in accuracy.

2.3 The finite aspect ratio dependence of the maximum elonga-
tion

The aspect ratio dependence of the maximum elongation is determined by the coefficient
κ1 and the functional dependence on ε assumed in Eq. (5). Observe that as ε → 0, the
maximum elongation is proportional to ε2, as may be expected in a previous result on the
natural elongation of tokamaks [12]. Also, as ε→ 1, the maximum elongation saturates.
The numerical simulations show that an accurate model for κ1 can be written as

κ1 = κ̂1l
µ1
i β

µ2
p (γτ)µ3(1 + ∆o)

µ4 . (7)
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3 Fitting results

3.1 Condition for optimal triangularity

We have found that optimal triangularity generally increases as ε, li or βp increases.
Taking the log of the factors in Eq. (4) and using a least square fitting, we obtain the
fitting parameters by

δopt = 2.30l1.27
i β−0.01

p ε(1.21−0.76li−1.22βp−0.001(γτ)+1.21(1+∆o)), (8)

κδ = 0.27l−2.88
i β0.10

p ε(0.45+0.24li−0.23βp+0.19(γτ)−0.75(1+∆o)). (9)

Because the quadratic model in Eq. (3) is actually too simple to find a very accurate fit,
the errors of the fitting are non-negligible: the standard deviation for the fits are σ = 0.09
in Eq. (8) and σ = 0.31 in Eq. (9). Even so, because of the flatness of the κ vs. δ curve,
the errors do no produce much of a change in κmax.

Still, κδ in Eq. (9) is a good indicator of the sensitivity of κ on δ. The formula shows
a robust tendency for κδ to decrease as li increases. Physically this can be explained by
follows: as li increases, the plasma current density is more concentrated in the core, and
the effect of surface triangularity on the n = 0 MHD mode is reduced.

Figure 1-(a) shows the contour plot of optimal triangularity obtained in many simu-
lations in terms of βp and li, and Figure 1-(b) shows the contour of the fitting formula of
δopt which will be explained in Eq. (8). As discussed in Section 2, if the optimal triangu-
larity δopt is comparable to or large than the value 0.7, there is no optimal triangularity.
Roughly speaking, the optimal triangularity tends to exceed 0.7 if li ≥ 1.0 or βp ≥ 1.4 for
ε = 0.3, γτ = 1.5 and ∆o = 0.1.

3.2 Fitting of κ0

As shown in Figure 2-(a), the parameters of the scaling relation for κ0 in Eq. (6) is
calculated by fitting the simulation results of κ at ε = 0.01 and δ = 0.0. The result is

κ0 = 1.0 + 0.54l−0.68
i (γτ)0.62(1 + ∆o)

−3.52, (10)

where the standard deviation of the fitting is quite low (σ = 0.003).

3.3 Fitting of κ1

The coefficient for the ε dependence, κ1 in Eq. (7), can be estimated by the difference
between κmax(ε = 0.01) and κmax(ε = 0.6), where ε = 0.6 is the maximum value of our
interest in this analysis. As shown in Figure 2-(a), κ1 is obtained by

κ1 = 0.60l0.24
i β0.02

p (γτ)0.12(1 + ∆o)
−0.44, (11)

where the standard deviation of the fitting is reasonably low (σ = 0.05). Here, the
constant 0.35 in Eq. (11) is given by 0.27/(2ε/(1 + ε2))2 for ε = 0.6.
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FIG. 1: Contour of optimal triangularity δopt in terms of li and βp using a) simulation
result and (b) fitted formula in Eq. (8) for γτ = 1.5, ∆o = 0.1 and ε = 0.3. The upper-
right white space in (a) indicates the parameters having no optimal triangularity in the
simulations.

Using the combined fitting parameter for κ0 and κ1 in Eq. (10) and (11), the simple
scaling in Eq. (5) results in a good fit for all simulation results in parameter space of ε,
li, βp, ∆o, and γτ . Figure 3 shows the fitting of κmax in Eq. (5) characterized by the
deviation σ = 0.11.

4 Discussion

We conclude by noting several points for the scaling laws obtained in Section 3:
(1) As βp increases or li increases, δopt increases. Eq. (8) shows that βp affects only the
ε dependent factor in δopt, while li affects both the ε dependent factor and the factor
independent of ε. The ε dependent factor is mainly due to the Shafranov shift, which
is approximately proportional to the theoretical value in the low ε limit (i.e. −1.22βp −
0.76li ∼ −1.22(βp + 0.5li) in Eq. (8)).
(2) The sensitivity of κ on δ is reduced by increasing li, as shown by the decrease of κδ in
Eq. (9).
(3) Eq. (10) and Eq. (11) show that li affects both κ0 and κ1, βp primarily affects κ1,
and γτ and ∆o primarily affects κ0,
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