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Scenario Developments on EAST &
ASIPP
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Outline @

ASIPP
> Introduction

o Facility upgrade in support of steady-state long-pulse scenarios

» Exploration of Steady-State Plasma Operation with ITER-like Tungsten
Divertor

o Scenario development with RF dominated heating
o Hot spot issues
» Progress of Key Physics Issues towards Steady-State Operation Regimes
o LHCD at high density
o RMP ELM control
o Particle/power exhaust control
o MCM physics at low collisionality

» Summary and Future Plans
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ASIPP
» Introduction

o Facility upgrade in support of steady-state long-pulse scenarios



EAST SSO Capabilities &

ASIPP

€ LHCD 4+6 MW (2.45/4.6GHz)
» Fast Electron Source
» Edge Current Drive /Profile
¢ ICRH 6+6 MW (25-75MHz)
» lon and Electron Heating
» Central Current Drive
€ ECRH 2(4) MW (140GHz2)
» Dominant electron heating
» Steering mirror, j, tailoring

Elevated capabilities in last two years € NBI 4+4 MW (co/counter, 80kV)

allow EAST to play a key role for > Sufficient power to probe

developing advanced SS scenarios

>

>

. . . limi
Fully non-inductive CD, high bootstrap t _
current fraction (f,,). » Variable rotation/ rot-shear

Active control of ELM and stationary
heat load on divertors



Outline &

ASIPP

» Exploration of Steady-State Plasma Operation with ITER-like Tungsten
Divertor

o Scenario development with RF dominated heating
o Hot spot issues



Fully non-inductive, high g, long-pulse H-

mode operations

» The goal is to develop
fully non-inductive

scenarios
€ High LHCD with moderate f,,

> Recent EAST results
show that

€ Zero loop voltage is achieved
at moderate density

& Extension for ITER and
CFTER

€ Optimization of Pp, ncp and
1:bs

1.5

© Vloop~0(NBI+RF)

) > ® Vioop~0(rF)
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Scatter plot of EAST g, versus line-
averaged density of low loop voltage

plasmas
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Minute-scale H-mode operation (>60s)! &

ASIPP
shot 67341/USN W divertor ]
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L R > Inter-ELM divertor heat
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Minute-scale H-mode operation (>60s)! &

EAST#67341, USN, W-divertor, Minute-scale H-mode
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Strike point splitting can significantly
reduce peak heat load!

ASIPP

» Pure RF heating:
PLaw, 2.4561,=0-4MW

PLiw, 266H=2-1IMW
» Good confinement with

H98(y2)~1' 1,

» Good control of impurity
level- assisted by ELMSs
and ECRH, and an edge
coherent mode,;

> Inter-ELM divertor heat
flux ~3 MW/m?
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Core confinement for RF heated long-pulse fully non- @
Inductive H-mode plasmas

EAST SN# 66740
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ASIPP

Stationary peaked T, profile was
typically maintained in the series
of long pulse modes on EAST

Power balance analysis shows the
significantly reduced %, in plasma
core

The core T, profile meets the ITB
criterion [G. Gresset, NF 2002]

> pr. (Max)=0.02>p,1z"~0.014

The improved confinement was
sustained very stably for tens of
seconds!
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W transport in RF-dominated ELMy H-mode &

ASIPP

RF heating plays a crucial role in regulating impurity

exhaust

HSB

EAST Shot : # 66553
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ELM suppression by RMP In long pulse H-moade @
with W divertor operation!

ASIPP
L, EAST # 67578 » ELM suppression in long-
. e o pulse _(~ 205s) ope_ratlon_al
' senario was realized with
small effect on plasma

mewmwwmwwwﬂ L performance (Hgg>1)
» Using n=1 RMP with
£ optimized spectrum
» Clear pump-out effect on W,

which is helpful for sustaining
long-pulse high-performance

e
i

. » Compatible with long-pulse
RF-heated H-mode plasmas

<n_>
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Hot spot issue and solutions &

» Strong hot spots observed on the
guard limiter of 4.6GHz LHCD
antenna: limiting the pulse length
due to strong impurity influx and
damage to the limiter

» Global parameter scan identified a
threshold LHCD power was around
2.5~3.0MW

» Possible mitigation from rotating °:27°f(a.%
RMP was observed by tuning the 6‘122 5/
particle flux hitting on the guard 0 A5 NN B3 W BB I8 OO
limiter

» New guard limiter design was
proposed with inclined surface to

lessen direct particle deposition on
the surface -
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Outline &

ASIPP

» Progress of Key Physics Issues towards Steady-State Operation Regimes
o LHCD at high density
o RMP ELM control
o Particle/power exhaust control
o MCM physics at low collisionality
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Higher CD driving at 4.6GHz &

ASIPP

HXR Count rate (s”)
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» HXR measurement suggested higher current
drive capability at 4.6GHz than 2.45GHz;

» Less parametric instability (P1) behavior
with 4.6GHz wave
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LHCD still effective at high density in H-

Shot No. 57115, Ip=500kA, Bt=2.8T
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» Even if at n,~4.5X10®m=3, part of

time (s)

current is still driven by LHW!

» Simulation show that N upshift
Improves accessibility of LHW at high

density.

EX/P7-5

@

ASIPP

ECR off EAST SN# 66744
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ECRH plays a crucial role for
achieving high-performance
H-mode plasmas on EAST
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Profile control with LH spectrum tuning &

ASIPP
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The best CD effect is obtained with N,P¢k=2.04 3 GENRAY/CQL3D simulation suggest

li in 49464 (NPeak=2.04) is the largest, different driven current profiles,

indicating more current is driven in the qualitatively — consistent with  the
core region compared to other cases. experiments.
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ELM suppression with low n RMP

EAST#55274
(a)' ) ) D (AU)

ot (kH2)|

s » Full ELM suppression was accessed
= ~omr] ] using low n RMP in low rotating
N plasma with RF dominant heating in
| | RO | EAST
ELM suppression with n=1 RMP in v' 3MW LHCD + IMW ICRF
slow-rotating RF heated plasmas v n=1 2 RMP

[Sun Y. et al., Phys. Rev. Lett. 117, 115001 (2016)] ¥ €6~ 0
EX/P7-4
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Nonlinear plasma response observed

EAST # 55272
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» Linear plasma response determines the best spectrum for ELM

suppression.

» Nonlinear plasma response suggests that a critical level of magnetic
topological change taking into account plasma response plays a key role
In accessing final ELM suppression

EX/P7-4
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Control of 3D divertor footprint &

» Both LHW & RMP coils can induce edge topology change - a) EAST#S9578, _ PortD
striated magnetic flux lobes = 3D divertor footprints
o EASTHS2327, RMP Lower outer farget LHW, EAST#59578 - |
é ()] Pcmde‘WlUQWST‘Q&Tﬂ'*m’T{" L % JS(ACZS) g3
E ‘ A j g —:E;—ls . ) n§
9 3 :_: 03
E 0 g» z 0.2
[ (c) Heat flux simulation - e 0.6
516 by EMC3-EIRENE I g
g: ”g 0.5
g :M g 10% ‘: PLiw ascrz~ 1-OMW .\ ) ngr
8: 160 100 50 [ 50 100 150 : o-i -_"' — - T |\— i
’ ’ Toroidal angle (deg) 5 10 15
Time (s) 02
» The experimental and modeling results of different toroidal
locations show good agreement. SR soL
> Simulations: EMC3-EIRENE (RMP), field line tracing taking into o
account helical current filaments in the SOL (LHW). ,' JULICH W
Allowing further heat flux control using 3D footprint e
with regulated divertor conditions. 21

EX/P7-10; TH/P6-20



Active control of particle exhaust &
. ASIPP
»USN, W-divertor, BXVB| W ELM particle flux favors outer

divertor in USN, while favoring
inner divertor in LSN.

W A reference for particle exhaust
during long-pulse H-mode
operation, together with cryo-
pumps.

M Consistent with PS flow, as
measured by LFS/HFS
reciprocating Langmuir probes.

B Compatible with ICRF heating
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New Stationary Small/No ELM H-Mode Regime at @

Low Collisionality
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> A new stationary small/no ELM H-
mode at low collisionality (v < 1)

» Good energy confinement, Hggy = 1.1, o

» Alow-n (mostly n=1 and sometimes
n=2) electro-Magnetic Coherent Mode
(MCM) at 30-60 kHz in the pedestal

region.

EX/10-2

ASIPP
_ cylindrical m=-4
n= 1 cylindrical m=-3 ------
cylindrical m=-2 -
200
150

- MCM

MCM frequency appears to be located
in the TAE gap near the local trapped-
thermal-electron bounce frequency

Frequency scales linearly with the local
Alfvén frequency, indicating the
possibility of trapped-electron-driven
TAE mode through bounce resonance
with trapped thermal electrons. 23



ELM pacing with LHCD modulation

120 Hz, 40% duty cycle
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»2.45G Modulation: P, , 4s~1.4 MW, 120 Hz, 40% duty cycle > Vacuum-ﬁeld mOde“ng Of LHCD-

» LHCD-induced flattening of density induced 3D magnetic topology change
profile near the separatrix and indicates that the flat-density-profile
pedestal density pump-out have been region and its radial width expansion
observed. are largely consistent with those of the

LHCD-induced edge stochastic
magnetic field layer, which may explain
the observed density profile change,
similar to the effect of RMPs. 24

» Density gradient is steepened near
the pedestal top, causing pedestal-
pressure-gradient increase that may

be responsible for the ELM
triggering. EX/10-2



Outline &

ASIPP

» Summary and Future Plans
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Summary @

» Stationary RF-heated long-pulse H-mode operations
were achieved on EAST with progress in the relevant physics
In support of SSO on tungsten divertor

® Extension of the SSO towards high g regime (up to 1.8);

® Achievement of low-n (1, 2) RMP ELM suppression in the RF
dominant slow-rotating long-pulse H-mode plasma (~20s);
Observation of the first evidence of a nonlinear transition from
mitigation to suppression of the ELMs by using RMPs;

® Extension of the current drive In high-density domain (up to
4.5X10°m-3) with 4.6 GHz and 2.45GHz LHCD systems together;

® Regulating heat deposition distribution and reducing transient peak
heat fluxes on the divertor and PFCs by applying 3D magnetic
perturbations at the plasma boundary.

ODlscovery of a new stationary ELM-stable H-mode (Hggy=1.1,
Ve ped <1) regime, which exhibited a low-n MCM at the pedestal.

26
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Future Plans

Step |

» Improve heating
efficiency and
develop the SSO-
relevant
fundamental
physics and key
diagnostics;

Step 11
» Develop the SSO

high
performance
plasma scenarios
and demonstrate
(=100s) long-
pulse H-mode
plasmas;

ASIPP

Step I

* Optimize the
SSO plasma and
extend the EAST
operational
domain towards
long-pulse, high
B, high power,
high
performance
regime.
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List of EAST Contributions @

ASIPP

» OV/2-2 B.N. Wan: Overview of EAST Experiments on the Development of High-Performance Steady-State Scenario

» EX/4-3 A.M. Garofalo: Development of High Poloidal B Steady-State Scenario with ITER-Like W Divertor on
EAST

» EX/10-2 G.S. Xu: ELM Pace-Making and Long-Pulse ELM-Stable H-Mode Operation with LHCD in EAST

» EX/P7-2 X. Gao: Key Issues towards Long Pulse High Operation on EAST Tokamak

» EX/P7-4 Y. Sun: ELM Suppression Using Resonant Magnetic Perturbation in EAST

» EX/P7-5 B. J. Ding: Recent Experimental and Modelling Advances in the Understanding of Lower Hybrid Current
Drive in ITER-Relevant Regimes

» EX/P7-7 B. Lyu: Experimental Study of Radio-Frequency Driven Spontaneous Rotation for High-Performance
Plasmas on EAST

» EX/P7-8 X.J. Zhang: Heating and Confinements by the Waves in the lon Cyclotron Range of Frequencies on EAST

» EX/P7-10 L. Wang: Evidence and Modelling of 3D Divertor Footprint Induced by Lower Hybrid Waves on EAST
with Tungsten Divertor Operations

» EX/P7-12 X.D. Zhang: Fishtail Divertor: A New Divertor Concept on EAST for Active Control of Heat Load on
Divertor Plate

» EX/P7-15 G. Li: Predictions of the Baseline Operation Scenario in Chinese Fusion Engineering Test Reactor

» EX/P7-16 W. X. Ding: Current Transport and Density Fluctuations at L-H Transition on EAST

» TH/P6-19 T. Y. Xia: Divertor Heat Flux Simulations in ELMy H-Mode Discharges of EAST and Other Tokamaks

» TH/P6-20 J. Huang: EMC3-EIRENE Simulations for the Impact of External Magnetic Perturbations on EAST
Edge Plasma

» FIP/1-1 P. Fu: Recent Progress of ITER Package in ASIPP

» FIP/P4-21 Z. Song: Research and Development Progress of the ITER PF Converter System

» MPT/1-2Ra G.-N. Luo: Overview on Decade Development of Plasma-Facing Components at ASIPP

Welcome to the poster session for further discussions!
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Backup slides
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Diagnostics for key profiles &
ASIPP

O Polarimeter Interferometer FAST Geometry

(POINT): n,, 4, g, B, profiles
O Core & edge TS: T, n,
O AXUV & Bolometer: radiation
O CXRS & XCS: T;, rotation
O SXPHA & ECE: T,
O Reflectometry: pedestal n,
O He-BES: edge n,, T,
O Recip.-LPs: SOL n,, T, flow

NT
annels

R [m]
O Bremsstrahlung: Z 0
0.0 0.2 0.£r1hg.6 08 1.0
O FIDA: Vfast-particle
O High speed CCD » Using POINT measurement as constraint,
O IR camera: heat flux accurate q profile were derived

O Div-LPs: div. particle/heat flux > Powerful tools for developing scenarios

O Total: >70 diagnostics
31



EAST Experiment Shows New L-H Transition Mechanism @
ASIPP

EAST shot 42160 - .
' . " ! . m L-H transition 0 -
10 (a{a . , Shift accelerates
- 4 ! - _
JiE A - at the transition,
= }gm w«w»{ ,(,v i * accompanied by
g < ®  turbulence
ol \j@ B iy % suppression.
'« \ uf ' I_- 1 ' " 3.903 3.9935 3.904 3.9045 3.965 3.9955 3.988
time (s)

{b) t=395s {c) t=397s {d) t=39945s

Eddy tilt increase
s as approaching the
L-H transition.

Do (a.u.)

kr {radicm)

V_(kmis)

kn {radfcm) kn {radfcm) kIl {radicm)

-Re (km%/s?)

Reciprocating
Langmuir
probe array

I‘ i 1 1 1 ! 1
3.95 3.96 3.97 3.98 3.99 4

First direct observation of L-H
transition mediated by turbulence
k. spectral shift and eddy tilting.

y

32
G.S. Xu, PRL 116, 095002 (2016)



Core confinement improvement and ELM effect @
for long pulse H-mode operation ASIPP

fitting w/o ECR |
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Small-ELM H- High confinement (Hqg ~ 0.98)
_ Lower impurity/radiation level
mode (1.6-6.06s) Suitable for long-pulse H-mode33
operation



Low n=1 intrinsic error field measured in EAST @

o7256 52260 —— 52201 —— 52203 | Resonant (odd) EA§T, n=1(PEST), 1=0.08kA x10°
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Compass scan [Wang H.H et al, Nucl. Fusion 56, 066011(2016) ]

» The measured n=1 intrinsic error field is of the order B,,,/B, ~10-.

» The amplitude depends on the RMP configuration used, which agrees
with linear plasma response modeling by MARS-F.

v" Non-Resonant:  B,,,/B, ~0.6x10-5 (better coupling) 34
v Resonant: B,,/By~4.4x10-5



