

Confinement in Wendelstein 7-X Limiter Plasmas

M. Hirsch, A. Dinklage, A. Alonso, G. Fuchert, S. Bohzenkov, U. Höfel,

T. Andreeva, J. Baldzuhn, M. Beurskens, H.-S. Bosch, C.D. Beidler, C. Biedermann, E. Blanco, S. Bozhenkov, R. Brakel, R. Burhenn, B. Buttenschön, A. Cappa, A. Czarnecka, M. Endler, T. Estrada, T. Fornal, J. Geiger, O. Grulke, J.H. Harris, D. Hartmann, M. Jakubowski, T. Klinger, S. Klose, J. Knauer, G. Kocsis, R. König, P. Kornejew, A. Krämer-Flecken, N. Krawczyk, M. Krychowiak, M. Kubkowska, I. Ksiazek, A. Langenberg, H.P. Laqua, S. Lazerson, H. Maaßberg, N. Marushchenko, S. Marsen, V. Moncada, D. Moseev, D. Naujoks, M. Otte, N. Pablant, E. Pasch, F. Pisano, K. Rahbarnia, T. Schröder, T. Stange, L. Stephey, T. Szepesi, T. Sunn Pedersen, H. Trimino Mora, H. Thomsen, H. Tsuchiya, Yu. Turkin, T. Wauters, U. Wenzel, A. Werner R. Wolf, G.A. Wurden, D. Zhang

IAEA -FEC, Kyoto 2016, EX4-5

outline: Confinement in Wendelstein 7-X Limiter Plasmas

- Experimental background for confinement studies
 - -> operational range
 - -> diagnostic commissioning and cross calibration
- o Energy content, power balance, global energy confinement
- o Local transport analysis
 - -> Core Electron Root Confinement
 - -> on- and off- axis ECRH heating

A. Alonso

.. limiter configuration and otherwise a bare metal device with uncooled structures installed only.
-> restricts energy per program to 4MJ to avoid local overheating -> max duration 6s
-> small configuration variation acceptable only

heating by 6 long pulse gyrotrons (30min) providing < 4.3 MW ECRH

D. Moseev et al. EX/P5-1

S. Marsen et al., EX/P5-13

-> more than 900 exp. programs conducted accumulated total plasma duration > 300s

-> high reproducibility !

parameter range of OP1.1 limiter scenarios

-> gas balance: fuelling dominated by outgassing about a factor of 4-5 over fuelling from valves (no feedback density control)

-> impurity content increased with discharge time since last wall conditioning and limited plasma duration eventually by radiation.

parameter range of OP1.1 limiter scenarios

Thomson scattering:

- -> absolute calibration of channels
- -> radiation background increases with Te

ECE radiometer (outboard / inboard) :

-> absolute calibration

-> identify spectral components that do not display blackbody emission

X-ray imaging (Ar-tracer): Te, Ti

- -> Ar as tracer
- -> confidence ranges of profile inversion (different inversion procedures)

Dispersion Interferometer and Thomson scattering 10 Hz

energy content and power balance

Fuchert et al to be published

kinetic energy from profile diagnostics assuming vacuum magnetic field and Z_{eff} =1

$$W_{kin} = (3/2) \int (n_e T_e + n_i T_i) (dV/dr) dr$$

-> Z_{eff} ? - First estimates yield Z_{eff} = 3 to 5 -> profile and mapping accuracy

> ~10 % of P_{ECRH} missing increasing with P_{ECRH} to up to 30% (CX-losses ? asymmetric limiter loads ?)

$$P_{ECRH} = \frac{dW}{dt} - P_{rad} - P_{CX} - P_{limiter}$$

 P_{ECRH}: calibrated diodes (accuracy ~5%) in duct -> absorption of X2-mode is near 99% (verified by inboard-side diodes)
P_{lim}: from two IR-cameras, assuming symmetry -> 25 to 50% @ stationary conditions, decreasing with P_{ECRH} G. Wurden et al., EX/P5-7 S. Bozhenkov et al., EX/P5-8
P_{rad}: from bolometer, assuming symmetry -> 25 – 35% @ stationary conditions. Increasing towards radiative collapse which depends on actual wall condition.

bolometry: emissivity profiles show radiative belt

M Hirsch, IAEA-FEC, Kyoto

M Hirsch, IAEA-FEC, Kyoto

on-axis and off-axis ECR Heating

T_e profile shape follows the ECRH Power deposition -> no indication for profile stiffness

Ibb

overview on first operation talk OV/3-1: R. C. Wolf commissioning -> H.-S. Bosch et al., FIP (post deadline)

o Experimental background in the first Operational Phase

-> operational range: outgassing, quasi-stationary, high reproducibility, radiative belt

-> commissioning and cross calibration of diagnostics

o Energy content, power balance and global energy confinement

-> $\tau_{\rm E}$ = 80 - 160ms ~ $\tau_{\rm E}^{\rm ISS04}$

-> configuration factor ~1 (limiter plasmas)

o Local transport analysis

- -> Core Electron Root Confinement not reaching fully neoclassical conditions in the core
- -> on- and off- axis ECRH heating no profile stiffness observed

