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PFM/C evolution in EAST
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W/Cu upper divertor design

Conceptual design Engineering design
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® ITER-like W monoblocks
-divertor targets (10 MW/m?)
® Flat type W/Cu PFCs
-divertor dome and baffles (5 MW/m?)

Dual chamfering for EAST




Flowchart of manufacturing
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HIP technology is widely used in the bonding of W/Cu and Cu/CuCrZr.
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ITER-like monoblock W/Cu PFC

® \W/Cu monoblocks are prepared employing HIP (900 °C, 100 MPa).

® \W/Cu PFUs are manufactured successfully by HIP (600 °C, 100 MPa).
Properties of CuCrZr after HIP satisfy the requirement.

® US-NDT results: Bondings between monoblocks/OFC/CuCrZr are
excellent.
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Flat-type W/Cu PFCs

® Casting + HIP: The interface of
W/Cu were joined by casting. | o
(1200°C), and then the interface of | 2\
Cu/CuCrZr was bonded by HIP at
lower temperature of 500~600 °C.

® NDT results: bondings between W
tiles/OFC/CuCrZr plate are excellent.




US-NDT for W/Cu PFCs

Single probe: scanning
the inner surface.

The defects of ®1 mm in
the interface of W/Cu and
Cu/CuCuZr was detected
clearly using this set-up.

15000 W/Cu mono-blocks
and 720 PFUs tested.

More than 30000
W/Cu slices and 240
flat PFUs have been
tested by this set-up
with detection limit
of ®1 mm.




High heat flux test of W/Cu PFCs

Flat type mock-ups
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In cooperation with

FT-1 withstood 102 cycles at 10
MW/m?, 102 cycles at 15 MW/m?,
302 cycles at 20 MW/m?.
FT-2 withstood 302 cycles at 10
MW/m?2, 102 cycles at 15 MW/m?,
102 cycles at 20 MW/m?.

In cooperation with

6 small scale monoblock mock-
ups were tested on IDTF (ITER
Divertor Test Facility).

All the mock-ups withstood 5000
cycles at 10 MW/m? and 1000
cycles at 20 MW/m?in accordance

with the qualification program.




Grand view of the W/Cu divertor for EAST

HIP + e-welding + NDTs
27 Jechnology R&D !
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PFCs+CB assembly: 80
IVT/OVT/DOME: 80 each
Monoblock PFUs: 720
Monoblock W: 15,000
Flat-type PFUs: 240

Flat W tiles: 24,000

E-beam seam: > 4000

W raw powders: > 10 tons
CuCrZr plates: > 8 tons
CuCrZr tubes: 720 pcs/360m

W/CU PFCs for

EAST upper divertor
w0 T
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Performance of W/Cu divertor during campaigns

In the 2015 and 2016
Iy 2t 2t spring campaigns, the

campaign, first _ W/Cu upper divertor
commissioning of Three practical measures withstood more severe

the upper W/Cu irradiation by EAST
divertor failed. plasma and no similar

A leaks occurred.
S =P ig !

=

welding

Performing baking and high
pressure helium leak check on
whole assembled div. modules

Improving NDT for welding seam || = f‘;"i_,j_
of tube-plate joints inspection Optimizing cooling tube
connection using bellows
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Section summary

The W/Cu upper divertor for EAST was finished in the spring of 2014.
HIP technology was used in the bonding of W/Cu and Cu/CuCrZr. NDT
guality control system has been established for quality control;

In collaboration with 10 and CEA teams, we have demonstrated
capability to resist 5000 cycles at 10 MW/m? plus 1000 cycles at 20
MW/m? for small scale monoblock mockups, and surprisingly over 300
cycles at 20 MW/m? for the flat-type ones.

Commissioning of the EAST W/Cu divertor in 2014 was unsatisfactory
and then several practical measures were implemented, which has
Improved welding quality and general reliability significantly.

The experience and lessons learned from batch production and
commissioning are valuable for ITER engineering validation and
tungsten-related plasma physics.

Disclaimer: The views and opinions expressed herein do not necessarily
reflect those of the ITER Organization.
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Pre-characterized Samples Exposed to Reproducible

Well-diagnosed Plasma Discharges Using DIMES

* Understanding of High-Z material erosion Filtered ~ High resolution

camera spectrometer

— Sheath effect
— Background impurities

* DIlI-D Experiments
— Thin Mo/W coating sample

— Net erosion & redeposition measured via
Rutherford backscattering (RBS)

— 1 cmsample + 1 mm samples to measure
net + gross erosion

— Gross erosion measured also
spectroscopically using S/XB coefficient

* The 3D Monte Carlo code ERO
— Plasma-surface interaction
— Local impurity fransport
— OEDGE background plasma as @ @ LA
input:n., To, E, . v, ] e — ¥ Langmuir

Probes
Dili-D
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The High Redeposition Ratio from ERO Simulation

Strongly Depends on Magnetic Pre-sheath Electric Field

. Magnetic pre-sheath dominates for With E,
small angle between B and surface
— Strong E field

— n, decay with potential drop

50] Experiment

Without E, .o

 Larger gyroradius due to strong E field
enhances the prompt redeposition

Mo redeposition ratio (%)

- Decreasing the sheath potential drop A S B AR ML
can suppress both gross and net Mo sample diameter (mm)
erosion Rate 0.7 . . 50

— The redeposition ratios are not
reduced because the density is
increased at the same time

— The gross erosion rate is reduced
for lower ion incident energy
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Modifying Sheath Potential by External Biasing

Changes Mo Gross Erosion Rate Significantly

- Central graphite with Mo coating IO.HZ' f'f°m 0V t_o 3.0 v
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Higher C Concentration in Background Plasma Leads

o Lower Net Erosion Rate

Ne —15x1019m3 T —31eV

90
« Assuming 1.8% of C3* 0.8 ln
concentration in plasma, ERO 0.7 \ / -
modeled net erosion rates agree 0.6 [
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Local Methane Gas Injection can Turn the Surface into

a Net Deposition Area

13CH, injected ~12 cm upstream from the center of the DIMES (1.8 Torr-1/s)
The samples imaged by an absolutely calibrated camera (Mol, CH, CI, CIl)
A carbon coating created on the Mo sample protecting the Mo from erosion
More 3C deposited in radial inboard direction is mainly due to the ExB drift
Higher D, leads to broader profile and lower 3C deposition on DiMES

Radial profile
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OEDGE/ERO Modeling Demonsirates that Inter-ELM

W Erosion is Well Explained by C—W Sputitering
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* High-resolution inter-ELM W erosion profiles were measured by
monitoring WI 400.9 nm line intensity with OSP sweeping

- charge-state-resolved carbon ion flux in the background plasma is
calculated using the OEDGE code

Dili-D

NATIONAL FUSION FACILITY R. Ding/IAEA/October 2016



Section summary

- Improved understanding of erosion and redeposition of high-Z
materials in a mixed materials environment in DIII-D was achieved

- Dedicated experiments coupled with ERO modeling highlight the
roles of the sheath potential and background impurities in
determining high-Z material erosion

* The high-Z materials erosion can be actively controlled with
electrical biasing, as well as by local gas puffing

- The experimental results are well reproduced by the OEDGE/ERO
simulations, allowing better predictions for ITER and future devices
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Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, frademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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