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Introduction of HL-2A

’ ‘R: 1.65m
a’ 0.40 m
‘B 12~2.7T
1, 150 ~ 480 kA
‘n,’ 1.0~6.0x 10¥m™
T  15~50keV
T 0.5~28keV

Heating systems:
« ECRH/ECCD: 5 MW
« NBI (tangential): 3 MW

« LHCD: 2 MW (PAM, 3.7 GHz/2 s)

B Recent objectives of HL-2A

— Optimize plasma control and wall conditioning
— Improve capabilities of auxiliary heating systems
— Develop advanced diagnostics and fuelling techniques

— Investigate ITER-relevant physics
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HL-2A Tokamak-present Status

1.65 m

0.40 m

1.2~2.7T

150 ~ 480 kA
1.0~6.0x10¥m™3
1.5 ~5.0 keV

0.5 ~ 2.8 keV

LN

Heating systems:
« ECRH/ECCD: 5 MW
« NBI (tangential): 3 MW

« LHCD: 2 MW (PAM, 3.7 GHz/2 s)

Newly developed systems « HCOOH laser interferometer/polarimeter
since FEC 2014 « ECEI (384-chs., 2.5 us, lem)

« LHCD: (H-mode coupling) « DBS (16-chs. Q-band & Ka-band)

« RMP (n=1), ELM mitigation « High frequency magnetic probe (m/n=20/30)
* Real-time control of NTM « Wide-angel infrared periscopes
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— First Exp. in H-mode with PAM LHCD Launcher
— H-mode Physics and Pedestal Dynamics

« Double Critical Gradients of Electromagnetic Turbulence
« Roles of Quasi-coherent Mode in Pedestal Dynamics

— ELM Mitigation and Control
o ELM Mitigation with LHCD
o ELM mitigation with SMBI and Impurities

— Edge Turbulence

« Synchronization of GAMs and Magnetic Fluctuations
« Zonal Flows Studied by Multi-channel Correlation Doppler Reflectometry

— Core Plasma Transport
« Ion Internal Transport Barriers
o Impurity Transport in ECRH Plasmas

— MHD and Energetic Particle Physics

« Mitigation of Runaway Current with SMBI
« Real-time Control of Tearing Modes with ECRH

« Alfvenic Ion Temperature Gradient Modes and Internal Kink Modes

—Summary & outlook
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First Exp. in H-mode with PAM LHCD Launcher

— Passive-active multi-junction (PAM)

Launcher 1s developed in view of foreseeing a
LH system for the second phase of ITER.

— PAM on HL-2A

= 4X 33, 16 active and 17 passive grills /row
= N=2.75, D=0.66

Shot:29127

— LH coupling characteristic by PAM
antenna studied in H-mode plasma for
the first time, low RC obtained in low ne.

— 900kW/400ms LH power coupled to H-
mode plasma
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— could give some data support for ITER
LH operation
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— H-mode Physics and Pedestal Dynamics
« Double Critical Gradients of Electromagnetic Turbulence
 Roles of Quasi-coherent Mode in Pedestal Dynamics
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Double Critical Gradients for Triggering EM Turbulence

1040 1050
t(ms)
— Impurity density profile is outwardly peaked

— Electromagnetic turbulence triggered by
1mpurity density gradient

Zhong W.L.. PRL 2016
Zhong W.L. EPS 2016 15.118
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— Observation of two different critical
gradients for trigging the EM turbulence .

— Key role of EM turb. in cyclic H-I transitions.

— Positive gradient: the mode driven by
impurity density gradient.

— Negative gradient: the mode driven both by



Roles of Quasi-coherent Mode in Pedestal Dynamics

Shot: 25108
— Dramatic increases of n_ and its AT A
e ,04- @ ! .
gradient , and slight decrease of T, 0 0.2- 1! !
gradient just prior to each onset of ~ 0T = i AT I TR T T T
ELMs. < 290 ]
: > 150 - L 1
— A quasi-coherent mode (40-60kHz) 7 oo el el
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was found to be responsible. B e S e et :
— The mode grows very rapidly just g 4
about 200 microseconds before each c® 2
ELM .
vl
£ 0.8 |
— The mode induces inward particle 7 <0.4 !
flux, and also induces increases of ! _
plasma pressure and its gradient. o '
: o ;
— The mode may play a key role in E
triggering of ELM onset. S
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Dong J.Q. FEC 2016 [EX/P7-24]

SWI P Southwestern Institute of Physics



— ELM Mitigation and Control
« ELM Mitigation with LHCD
o ELM mitigation with SMBI and Impurities
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ELM Mitigation with LHCD

Shot #27141
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— ELM has been mitigated by using LHCD in HL-2A, divertor heat load reduced.

— Enhanced transport by pedestal turbulence might be the direct cause of the mitigation.
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— The mitigation effect was very sensitive to the plasma density and the LHW absorbed power.

Xiao G.L. APTWG 2016
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ELM Mitigation by Impurities Injection

LBO #29303 in HL-2A i LBO | ‘#29672|in HL-2A
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— ELM mitigation by LBO-seeded impurities has
been performed recently.

— Impurities mainly deposited in pedestal top.

890 900 910 920 930 940 950 R,
Time (ms) — Pedestal turbulence was enhanced during mitigation.
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ELM Mitigation by SMBI

(a) Experiment
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Shi Z.B. FEC 2016 [EX/P7-22]
Ma Q. NF 2016
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— Shallow deposition of SMBI 1s sufficient for
ELM mitigation.

— The shallower Er well may be responsible for
the increase of ELM frequency.
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— Edge Turbulence

« Synchronization of GAMs and Magnetic Fluctuations
 Zonal Flows Studied by Multi-channel Correlation Doppler Reflectometry
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Synchronization of GAMs and Magnetic Fluctuations
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Zhao K.J. PRL 2016, Yan L.W. FEC 2016 [EX/P7-27]

— Zonal flow is synchronous with magnetic island suggests that the zonal flows see
the islands, and respond to the island with sensitivity to the phase.

— Discovery of synchronization between GAMs and magnetic islands reveals a new,
essential and prototypical process in nonlinear dynamics of high temperature plasmas.
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Zonal Flows Studied by Correlation Doppler Reflectometry

: E, fluctuations :
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— Novel multi-channel Doppler reflectometers have
been developed (16 chs., high flexibility for 3-D
measurement).

— For the first time, 3-D spatial structure of GAM
and LFZF were measured by correlation Doppler
reflectometers.

— The Landau damping and collisional damping of
GAM were demonstrated.
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Landau damping of GAM

Zhong W.L. JINST 2015
Zhong W.L. NF 2015
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— Core Plasma Transport
 Ion Internal Transport Barriers
o Impurity Transport in ECRH Plasmas
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IITB Formation on HL-2A
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— Jon ITB can be observed at the q=1 surface;

— Criterion for characterizing iI'TB: maximum R/LTi should be higher than 14.
— ITG 1s suppressed by the toroidal rotation shear;

— The m/n=1/1 internal kink mode enhances iITB.

Yu D.L. FEC 2016 [EX/8-2]
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Impurity Transport in ECRH Plasma with MHD instability

(b} Outer-deposited ECRH
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— Outer-deposited ECRH: normal sawtooth

— Inner-deposited ECRH

* reduction of impurity concentration;

‘reversed sawtooth oscillation;

» diffusion coefficient D and convection velocity V are

- e increased
= al — During the occurrence of the long-lasting m/n=1/1 mode
E , B == an outward heat flux was observed.
2 . . . . .
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Interaction between Turbulence and Large-scale Mode
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Non-local Transport Triggered by Fishbone Mode
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A new-type non-local transport triggered by a fishbone mode observed on HL-2A.

B The rapid core heating leads to a simultaneous decrease in temperature in the edge.
B | fast time response, ~50us; II: slow time response, ~3ms.

Auto-correlation function (ACF) coefficients (a-b) of ECE signals at two radial positions and spatial
profiles (c) of Hurst exponents (H, obtained by R/S method) from ECE signals.

ACFs and Hurst exponent both enhances during the fishbone and nonlocal transport. And so the new-type
nonlocal transport is potentially linked to self-organized critical (SOC) dynamics.

Chen W. NF (Lett.) 2016
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— MHD and Energetic Particle Physics
o Mitigation of Runaway Current with SMBI

« Real-time Control of Tearing Modes with ECRH
« Alfvenic Ion Temperature Gradient Modes and Internal Kink Modes
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Mitigation of Runaway Current with SMBI

— Runaway current caused by argon
injection with MGI was successfully
suppressed by SMBI with a number of
injected helium atoms of about 1.0X 102!
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Liu Yi FEC 2016 [EX/9-3]
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— A toroidal alfvén eignmode (TAE) was
observed during the disruption, which
plays a favorable role in scattering
runaway electrons, and hence, limiting
the strength of runaway beam.
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Real-Time Control of Tearing Modes

Closed loop feedback system for NTM control
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— RT control of NTMs by ECRH with launcher mirror steering was developed.
— An RT code solves equilibrium equation with 129x129 grid scale in 1 ms.

— The magnetic island location has the high spatial resolution less than 1 cm.
— Tearing modes were stabilized with the RT mirror steering.
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Alfvenic lon Temperature Gradient (AITG) Mode

— Appear in the high-density Ohmic plasmas with weak magnetic shear and low pressure
gradients; predicted by numerical solutions of the AITG/KBM equation;

— f=15-40 kHz which lies in KBM-AITG-BAE frequency ranges:;
— Low mode number m~n=3-6;
— Propagate in the ion diamagnetic drift direction;

— Link to the minor disruption of plasma. Chen W. FEC 2016 [EX/P7-17]
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Non-resonant Internal Kink Mode
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NRK excited by energetic electrons is found
firstly with ECRH+ECCD* (ECCD*: Iycop//-Ip)s
Qmin
f=20-5kHz, frequency decreasing with q,;
multi-harmonics; Low mode number

m=n=1,2,3,...;
Propagate in the electron diamagnetic drift
direction;

Yu L.M. NF 2016, submitted
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Summary & outlook
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— First experiment in H-mode with PAM LHCD launcher has been performed
in HL-2A [FEC 2016 EX/P7-23].

— EM turbulence was excited by either edge self-accumulated or externally

seeded 1impurities. Double critical gradients observed and reproduced by
theoretical simulation /PRL 2016, EPS 2016].

— For the first time, the synchronization of GAMs and magnetic fluctuations

was observed in the edge plasmas. The frequency entrainment and phase lock
were also elucidated. /PRL 2016, FEC 2016 EX/P7-27].

— ELM mitigation and control has achieved by SMBI, impurity seeding, RMP
and LHW. /NF 2016, PoP 2016, FEC 2016 EX/P7-22]

—The 10on internal transport barrier was observed in the NBI heated plasmas.
The results suggested the importance of flow shear on ITB sustainment. /NF
2016, FEC 2016 EX/S8-2].

— The runaway current was successfully suppressed by SMBI. In addition, a

TAE-like instability was observed during disruptions deliberately triggered
by MGI. /[FEC 2016 EX/9-3].
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¢ HL-2A
* Heating upgrade: 2MW LHCD, 5MW ECRH, SMW NBI,
+ Diagnostics development: ECEI, MSE, BES, GPI, DBS, CXRS ...
* Transport: H-mode physics, impurity transport, momentum transport
- MHD instability (RWM, NTM), NTM & saw tooth control by ECRH;

+ 3D effects: on ELM control, plasma flow, ZF and turbulence, L-H
transition threshold, plasma displacement;

« Energetic particles: EP driven mode identification, EP loss and control of
EP induced instabilities.
¢ HL-2M (upgrade of HL-2A)

« Parameters: R=1.78m, a=0.65m, Bt=2.2T, Ip=2.56MA, Heating~ 256MW,
triangularity=0.5, elongation=1.8-2.0

- Mission: advanced divertor (snowflake, tripod), PWI at high heat flux,
high performance, high beta, and high bootstrap current plasma.
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