
Model-based *q*-profile Feedback Control Improves Reproducibility of Plasma Discharges in DIII-D

- Reliable reproduction of plasma conditions is critical to access high-q_{min} steady-state scenarios, which are very sensitive to early changes in the q profile.
- A combined feedforward + feedback control scheme is used to optimize the current ramp-up phase by consistently achieving target q profiles at prescribed times during the plasma formation phase.

Actual (red) vs. reference (blue) profiles at initial (\sim 0.4s) and final (\sim 1.3s) times. FF only (black) at final time. Reference (final time) \rightarrow Target (green).

Target 1: q_{min} =1.3, q_{95} =4.4,t=1.5s;Target 2: q_{min} =1.65, q_{95} =5.0,t=1.3s;(figure) Target 3: q_{min} =2.1, q_{95} =6.2,t=1.0s.

Experiments demonstrate capability of model-based profile control to improve scenario robustness, thereby providing significantly improved main operating regimes for steady- state studies in DIII-D.

