

OV/3-3

Recent Progress of JT-60SA Project

H. Shirai¹, P. Barabaschi², Y. Kamada³ and the JT-60SA

¹JT-60SA Project Leader, ²EU Project Manager, ³JA Project Manager

IAEA Fusion Energy Conference 2016 17-22 October 2016 @Kyoto International Conference Center

JT-60SA (JT-60 Super Advanced) Project

JT-60SA Project is implemented under the Broader Approach (BA) Agreement between EU and Japan as well as the Japanese national fusion programme.

Mission:

Contribute to the early realization of fusion energy by addressing key physics and engineering issues for ITER and DEMO.

Major Objectives:

(1) Supportive Researches for ITER

JT-60SA starts operation in 2019 → address ITER related issues in advance and optimize its operation scenarios under the break-even condition

(2) Complementary Researches for DEMO study long sustainment of high integrated

performance plasmas with high β_N value (3) Foster Next Generation

build up experience of young scientists and technicians who will play leading roles in ITER and DEMO.

(full current inductive mode)

Plasma Current	5.5 MA
Toroidal Field	2.25 T
Major Radius	2.96 m
Minor Radius	1.18 m
Elongation, _{KX}	1.87
Triangularity, δ _x	0.50
Safety factor, q ₉₅	3.0
Plasma Volume	131 m ³
Heating Power	41 MW
Normalized beta, β_N	3.1

JT-60SA target region in relation to ITER and DEMO

Long sustainment of high integrated performance plasmas with high β_N value for DEMO will be investigated by making the best use of (1) powerful and versatile NBI&ECRF system, (2) flexible plasma shaping, (3) various kinds of in-vessel coils, and so forth.

Existing JT-60 facilities (e.g. transformer substation, motor generators, etc.) are also reused as much as possible to reduce overall project cost. 4

Toroidal Field Coils (NbTi)

Two TF coils now in Naka Site

TF coil assembly around the vacuum vessel will start in December 2016. 6

All EF coils were manufactured with excellent accuracy in the circularity for minimizing error field.

	Diameter	Circularity	Requirement	fabrication	
EF1	12.0 m	0.3 mm	≤8 mm		
EF2	9.6 m	0.4 mm	≤7 mm	Aug. 2016	EF1
EF3	4.4 m	0.2 mm	≤6 mm		
EF4	4.4 m	0.6 mm	≤6 mm	Feb. 2013	
EF5	8.1 m	0.6 mm	≤7 mm	lon 2014	
EF6	10.5 m	1.3 mm	≤8 mm	Jan. 2014	EF2
	THE D		4363	/	

EF4, EF5 and EF6 are temporally placed on the Cryostat Base.

Central Solenoid (Nb₃Sn)

High Temperature Superconductor Current Leads, Advanced Superconducting Tokamak BA-Satellite Tokamak Program High Temperature Superconductor Current Leads, Coil Terminal Boxes and Valve Boxes

High Temperature Superconductor Current Leads (HTS-CLs) using bismuth alloy (Bi-2223/AgAu) saves cooling power of the cryogenic system. (6 HTS-CLs (25.7kA) for TF coils, 20 HTS-CLs (20kA) for EF coils and CS)

Cryogenic Plant has been newly constructed in the Naka Site.

Refrigerator Cold Box & Auxiliary Cold Box

Helium Storage vessels

Warm Compressors

Construction Work in Naka Site

Naka Site on 7 April 2015

Naka Site on 27 May 2015

JT-60SA Advanced Superconducting Tokamak BA-Satellite Tokamak Program **Commissioning of the Cryogenic** System was successfully completed.

- Adoption of Auxiliary Cold Box facilitates heat load smoothing.
- Actual operational condition were tested and validated by the commissioning in Sep. 2016.

JT-60SA Advanced Superconducting Tokamak BA-Satellite Tokamak Program

340° Vacuum Vessel was completed

340° Vacuum Vessel in Aug. 2015

First delivery of 40° inboard sector in Apr. 2011

Thermal Shields are being installed.

High dimensional accuracy was achieved by careful welding work.

	actual	Requirement
horizontal	±5 mm	±30 mm
vertical	-4 mm	+6/-4 mm

(Welding shrinkage in the torus direction was adjusted by welding with splice plates.)

40° VVTS

in the VVTS manufacturer

VVTS assembly will be completed in Nov. 2016.

Power Supply System

SCMPS (Superconducting Magnet PS)

Base PS to provide DC current to the SC coils PS for EF2~EF5 and TF coils

PS for CS1-4 modules, EF1,EF6 coils

SNU (Switching Network Unit)

Booster PS to provide high voltage for plasma breakdown and current ramp-up

QPC (Quench Protection Circuit)

Protection of SC coils when quench or PS failure occur

10 units for EF coils and CS modules

3 units for TF coils,

Motor Generator (reused facility)

Provide power for P-NBI, N-NBI, EF&CS PS H-MG: 18kV/400MVA, 2.6GJ T-MG: 18kV/215MVA, 4.0GJ

Powerful and versatile heating/CD by NBI and ECRF (41MW in total)

NBI system

- P-NBI, 85keV, 12units × 2MW=24MW, 100s tangential 4u (CO:2u, CTR:2u), Perpendicular: 8u
- N-NBI, 500keV, 2units×5MW=10MW, 100s tangential, off-axis

Beam acceleration of 85 keV was successfully demonstrated for 100s (P-NBI).

(P-NBI ion source)

Arc chamber N₂ box

Heating, current-drive and momentum-input profiles can be flexibly controlled.

ECRF system

Overall Progress of JT-60SA Project

Research Phases of JT-60SA

• JT-60SA research phase starts with Hydrogen operation to conduct full commissioning.

• JT-60SA is upgraded step by step.

(power/duration of P-NBI&ECRF, divertor target material, remote handling availability)

	Phase	Expected Duration		Annual Neutron Limit	Remote Handling	Divertor	P−NB 85keV	N-NB 500keV	ECRF 110 GHz & 138GHz	Max Power	Power x Time
Initial Research Phase	phase I	1-2y	Н	-		LSN partial-	10MW		1.5MW x100s	23MW	
	phase II	2-3y	D	4E19	R&D	Carbon Div.Pumping	Perp.		1.5MW x5s	33MW	NB: 20MW x 100s 30MW x 60s
Integrated Research Phase	phase I	2-3y	D	4E20		LSN full-monoblock	13MW Tang.	10MW		27MW	ECRF: 100s
	phase II	>2y	D	1E21		Carbon Div. Pumping	ZMŴ	TOWITY	75404	5719199	
Extended Research Phase		>5y	D	1.5E21	Use	DN/SN full-monoblock Metal or Carbon Advanced Structure	24MW		7.000	41MW	41MW x 100s
ITER H / He operation phase (address compatibility of metallic divertor with integrated high performance plasmas) ¹⁸											

EU/JA Research Collaboration on JT-60SA Project

- Research collaboration on JT-60SA Project is strongly promoted.
- EU and JA fusion community members join "JT-60SA Research Unit" to study key physics and engineering issues of ITER and DEMO.

JT-60SA target region covers ITER target and **DEMO target**. Thus their acceptable parameters will be investigated by JT-60SA operation. Advanced Superconducting Tokamak

- ITER like operation environment
 - ITER like non-dimensional parameters, small-torque input Electron heating dominant plasma (by N-NBI, ECRF) Large fraction of energetic particle (500 keV N-NB) Operation scenario optimization with superconducting coils.
- High Plasma Performance
 - H-mode operation (H, He, D) study ($I_p \sim 5.5$ MA) towards Q=10
 - L-H transition, Pedestal Structure, Confinement Improvement H-mode compatibility with radiative divertor, RMP, etc.
 - **Confinement in high n_{GW} regime**
 - Effect of Local Ripple, Error Field / noise on confinement
 - Improved H-mode (Hybrid) operation with ITER-like shape ($I_p \sim 4.6$ MA)

• Divertor Integrity

ELM mitigation (RMP, pellet pacing, etc.) & small / no ELM regime at low v^* Divertor Heat Load reduction (radiative divertor, ITER-like divertor config.) Disruption avoidance & mitigation at high I_p (MGI, etc.)

• High β_N plasma MHD instability suppression at small~zero rotation condition

T-60SA Research and Development for tokamak BA-Satellite Tokamak Program

TH/P2-19 (N. Hayashi) [Tue.]

Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation has been studied.

1.5D core transport solver (TOPICS) + IMPACT using SONIC Ar edge densities \rightarrow

Ar seeding is effective for reduction of divertor heat load below 10 MW/m². Ar¹⁶⁻¹⁸⁺ accumulation in core causes slight decrease of temperature, which is fully recoverable by additional core heating.

ρ

EX/P8-31 (D. Douai) [Fri.]

EC Wall Conditioning (ECWC) experiments to support JT-60SA operation have been performed by TCV.

Optimized combination of $\rm B_{\rm H}$ and $\rm B_{\rm V}$ are required for effective wall conditioning.

see more in EX/P8-40 (G. Giruzzi, M. Yoshida) [Fri.]

21

Summary of JT-60SA Project

- 1. Fabrication, installation and commissioning of JT-60SA components and systems procured by EU and Japan are steadily progressing. TF coil assembly around the vacuum vessel will start soon. JT-60SA starts operation in 2019.
- 2. Powerful and versatile NBI/ECRF system, flexible plasma shaping, various kinds of in-vessel coils are advantage of JT-60SA for plasma control.
- 3. JT-60SA will explore ITER and DEMO relevant parameter region in advance for the purpose of optimization of their operational scenarios, especially in high β_N (~5) region.
- 4. Close research collaboration between EU and Japan has been promoted. JT-60SA Research Plan v.3.3 by 378 researchers from EU and Japan released in March 2016 elaborates on key physics and engineering issues to be addressed for ITER and DEMO.

JT-60SA related presentations in this conference

FIP/1-3Ra (J. Hiratsuka)Long-pulse acceleration of 1MeV negative ion beams toward ITER and JT- 60SA neutral beam injectors & towards powerful negative ion beams at the test facility ELISE for the ITER and DEMO NBI systemTH/P1-18 (T. Bolzonella)Securing high β_N JT-60SA operational space by MHD stability and active control modellingTH/P2-19 (N. Hayashi)Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulationTH/P2-20 (M. Romanelli)Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT- 60SA19 Oct (Wed) FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA2	<u>18 Oct (Tue)</u>		
facility ELISE for the ITER and DEMO NBI systemTH/P1-18 (T. Bolzonella)Securing high β _N JT-60SA operational space by MHD stability and active control modellingTH/P2-19 (N. Hayashi)Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulationTH/P2-20 (M. Romanelli)Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT- 60SA19 Oct (Wed) FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA22	FIP/1-3Ra (J. Hiratsuka)	Long-pulse acceleration of 1MeV negative ion beams toward ITER and JT- 60SA neutral beam injectors & towards powerful negative ion beams at the	test
TH/P1-18 (T. Bolzonella)Securing high β _N JT-60SA operational space by MHD stability and active control modellingTH/P2-19 (N. Hayashi)Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulationTH/P2-20 (M. Romanelli)Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT- 60SA19 Oct (Wed) 		facility ELISE for the ITER and DEMO NBI system	
TH/P2-19 (N. Hayashi)Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT- 60SA19 Oct (Wed)FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA23Core-edge coupled predictive modeling of JT-60SA projectsEX/P8-10 (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA	TH/P1-18 (T. Bolzonella)	Securing high β_N JT-60SA operational space by MHD stability and active control modelling	
TH/P2-20 (M. Romanelli)Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT- 60SA19 Oct (Wed) FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA 24	TH/P2-19 (N. Hayashi)	Core-edge coupled predictive modeling of JT-60SA high-beta steady-state plasma with impurity accumulation	
19 Oct (Wed) FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA	TH/P2-20 (M. Romanelli)	Investigation of Sustainable Reduced-Power non-inductive Scenarios on JT 60SA	-
FIP/P4-42 (C. Day)Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) 	19 Oct (Wed)		
20 Oct (Thu) TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA 23	FIP/P4-42 (C. Day)	Assessment of the operational window for JT-60SA divertor pumping under consideration of the effects from neutral-neutral collisions	
TH/P6-24 (R. Zagorski)Numerical analyses of baseline JT-60SA design concepts with the COREDIV code21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA	20 Oct (Thu)		
21 Oct (Fri) FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA T-60SA TF Coil Manufacture, Test and Preassembly by CEA	TH/P6-24 (R. Zagorski)	Numerical analyses of baseline JT-60SA design concepts with the COREDI code	IV
FIP/P7-37 (JC. Vallet)Towards the completion of the CEA Contributions to the Broader Approach ProjectsEX/P8-31 (D. Douai)Towards the completion of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SAEX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA	21 Oct (Fri)		
 EX/P8-31 (D. Douai) Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA EX/P8-40 (G. Giruzzi) Physics and operation oriented activities in preparation of the JT-60SA FIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool) Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA 	FIP/P7-37 (JC. Vallet)	Towards the completion of the CEA Contributions to the Broader Approach Projects	
EX/P8-40 (G. Giruzzi)Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitationFIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA23	EX/P8-31 (D. Douai)	Development of Helium Electron Cyclotron Wall Conditioning on TCV for the operation of JT-60SA	е
FIP/4-1Ra (Y. Shibama)Assembly Technologies of the Superconducting Tokamak on JT-60SAFIP/4-1Rb (P. Decool)JT-60SA TF Coil Manufacture, Test and Preassembly by CEA23	EX/P8-40 (G. Giruzzi)	Physics and operation oriented activities in preparation of the JT-60SA tokamak exploitation	
	FIP/4-1Ra (Y. Shibama) FIP/4-1Rb (P. Decool)	Assembly Technologies of the Superconducting Tokamak on JT-60SA JT-60SA TF Coil Manufacture, Test and Preassembly by CEA	23