

Current profile shape effects on the formation and termination of runaway beams in tokamak disruptions and implications for ITER

• Substantial peaking of the current profile during the generation of the RE current is predicted by 1-D modeling of the plasma and RE current density profiles during the disruption CQ and supported by JET observations

(I_{int} estimated by means of plasma equilibrium reconstruction with EFIT)

The observed peaking suggests potentially RE MHD unstable plasmas

- 1-D simulations for ITER disruptions with Ar and Ne injection (including different RE seeds and the avalanche mechanism) indicate that:
 - for the longest CQs compatible with acceptable mechanical forces in ITER, RE beams up to ~10 MA can be generated and a few several hundreds of MJs might be deposited by the REs on PFCs
 - the RE beam typically crosses the high- I_{int} empirical stability boundary in I_{int} - q_a space before the expected time in ITER for the vertical instability growth (~ 100 ms)
 - mixed Ar+D or Ne+D injection is effective in controlling the formation of the RE current as well as the energy deposited by the REs on PFCs

26th IAEA FEC, Kyoto