

Use of HRA Insights to Improve Decision-Making

IAEA Conference on Human Factors & Safety Culture , Vienna

Jeff Julius, Scientech

Co-Authors

Parviz Moieni, Scientech, Curtiss-Wright San Diego, California, USA

Kaydee Kohlhepp Scientech, Curtiss-Wright Seattle, Washington, USA

Jan Grobbelaar Scientech, Curtiss-Wright Seattle, Washington, USA

Presentation Outline

Overview of HRA & PRA

 Human Reliability Analysis & Probabilistic Safety (Risk) Assessment Support of Decision-Making

EPRI HRA Users Group

- Mission & Members
- Halden Benchmarking

Examples of Using Risk Insights in Decision-Making

Applications around the world

HRA Professional Society

PRA as a Tool Supporting Safety Culture

PRA is an analytical tool that systematically answers.....

- 1. What can go wrong?
- 2. How likely is it?
- **3.** What are the consequences?

PRA can **directly** support Safety Culture by identification and prioritization of issues based on risk-significance.

PRA can **indirectly** support Safety Culture by promoting organizational awareness of Risk and consider questions asked by PRA.

Overview of Human Reliability Analysis in U.S. PRA

Overview – Using HRA & PRA to Improve Decision-Making

Decision-Making:

- 1. Operation of a NPP
 - Online maintenance
 - Training and procedure
- 2. Maintenance infrequent tests also regular, scheduled T&M
- 3. Licensing of a NPP
 - Initial plant design
 - Periodic Safety Reviews
 - Life extension
- 4. Fire Protection Upgrade

Examples of HRA/PRA Insight:

1. Operations

- Configuration Risk Management
- Improve operator response
- 2. Maintenance reduced (e.g. ISI) or more on-line maintenance
- 3. Licensing plant mod evaluation
 - Prioritize design changes
 - HRA has cross-cutting impact
 - Post-Fukushima Response
- 4. Fire Recovery Actions incl. Level 2

Improves Safety Culture by promoting Organization Awareness of Risk!

PRA and HRA Provides a Structured Approach & Models

7 | February 23, 2016 | © 2014 Curtiss-Wright

EPRI HRA Users Group – Missions & Members

<u>Missions</u>:

- 1. Develop a software tool to enabling different analysts to obtain **comparable results** for same action & method at similar plants.
- 2. To develop guidelines & training for application of HRA methods.
- 3. Key goal is to enable industry to **converge on common methods**.
- **4. Coordinate with industry groups** such as USNRC, Owners Groups, & within EPRI to develop guidelines and training materials.

Members:

- All USA Utilities; recently added US NRC
- Vendors Areva, Bechtel-Bettis, KEPCO E&C, PBMR, Rolls Royce, & Westinghouse
- International: CANDU Owners Group, Europe, Africa and Asia

EPRI HRA Users Group – Approach and Methods

Framework:

- SHARP & SHARP1 (EPRI NP-3583, 1984 & EPRI NP 7183-M, 1990)
 - Qualitative analysis considering Context
 - Cues, procedures, training, timing
 - Quantitative analysis using various methods

Latent/Pre-Initiator HRAs:

- THERP Model (NUREG/CR-1278, 1983)
- **ASEP Model** (NUREG/CR-4772, 1987)

Dynamic/Post-Initiator HRAs:

- CBDTM (cognitive) / THERP (execution) combination
 - Combination consists of "cognitive" & "execution" errors
 - CBDTM (EPRI TR 100259, 1992)
- HCR/ORE (cognition) /THERP (execution) combination
 - HCR/ORE replaces THERP Time-Reliability Correlation (EPRI TR 100259, 1992)
- Alternative Approaches
 - Annunciator Response Model (NUREG/CR-1278, 1983)
 - SPAR-H for cognition & execution

EPRI HRA Calculator 3.04 - []	DEMO.HRA] - [Su	nmary]				
🖹 File Edit Tools View Window	Help					
Open Save Pre	All/Def. Delete	E Сору	Reports Ne	ew Edit	Proc.	Criteria Screening Screening Depend.
Summary 🕉 FEEDBLEED1						
Basic Event	🛆 Туре	P(cog)	P(exe)	Total HEP	EF	Description
FEEDBLEED1 — Annunciator Response/THERP	Post					Operators Initiate RCS inject and RCS bleed before CD
CBDTM/THERP	Х	1.3e-02	5.5e-03	1.9e-02	5	
HCR/ORE/THERP		1.3e-03	3.3e-02	3.4e-02	5	
Screening HEP		-	-	1.0e+00	1	
SPAR-H		5.0e-03	2.0e-02	1.6e-01	-	
E FEED2	Post					Operators Initiate RCS inject before CD
Annunciator Response/THERP						
CBDTM/THERP	x	6.9e-03	2.6e-03	9.5e-03	5	
-HCR/ORE/THERP		1.3e-03	3.3e-02	3.4e-02	5	
- Screening HEP		-	-	1.0e+00	1	
SPAR-H		2.0e-04	4.0e-04	6.0e-04	-	
E RHR-R1	Post					Operator Recovers RHR Before Core damage
— Annunciator Response/THERP						
CBDTM/THERP	X	3.0e-03	1.0e-03	4.0e-03	5	
HCR/ORE/THERP		6.8e-03	6.5e-03	1.3e-02	5	
Screening HEP		-	-	1.0e+00	1	
SPAR-H		2.0e-04	1.0e-03	1.2e-03	-	
RHR-R2	Post					Operator Recovers RHR Before Core damage
 Annunciator Response/THERP 						
CBDTM/THERP	X	3.0e-03	1.0e-03	4.0e-03	5	
HCR/ORE/THERP		6.8e-03	6.5e-03	1.3e-02	5	
Screening HEP		-	-	1.0e+00	1	
SPAR-H		2.0e-04	1.0e-03	1.2e-03	-	

EPRI HRA Users Group - Halden Benchmarking Compare HRA predictions with Simulator Observations

- CBDT/THERP: EPRI (Scientech)
- THERP: NRC staff + Consultants
- THERP w Bayesian Enhancement : VTT
- ATHEANA: NRC staff+Consultants
- SPAR-H: NRC staff+Consultants, INL
- Decision Trees + ASEP: NRI
- MERMOS: EDF
- PANAME: IRSN

- HEART: Vattenfall & Ringhals
- KHRA: KAERI
- CREAM: NRI
- CESA: PSI
 Simulations –
- Microsaint: Alion
- IDAC: University of Maryland
- QUEST-HP: Riso

Bottom Line – Qualitative Analysis is Important!

Examples of Using Risk Insights in Decision-Making

- Increasing number of PRA & HRA applications in the USA
- Increasing number of international users in the EPRI HRA Users Group
 - Europe recent training class conducted in Spain
 - Middle East UAE is using the HRA Calculator to help start-up 4 plants
 - Asia Korea & Japan recently joined (or joining this year)
 - Africa long-time interest
- HRA analysts in other countries may have different applications/uses and thus different needs from the EPRI Users Group.
- This presentation addresses:
 - 1) Five examples of HRA insights from different countries
 - 2) An overview of the HRA Society, a professional organization

World List of Nuclear Power Plants

HRA Use in PRA Models & Applications

In the United States (Example-1):

- Fire Protection Program change to NFPA 805, risk-informed performance-based:
 - Recovery Actions to mitigate variances from design requirements
 - Recovery Actions to reduce radioactive release such as Containment Isolation & H2 Igniters

Configuration Risk Management:

- Develop contingencies for events occurring in certain plant line-ups
- Examples, protected train & high risk evolutions
- Feedback to Operator Training:
 - Identification of PRA-important Scenarios & Procedures
- Address Licensing Issues:
 - Impact of plant design modification such as Timing/Instrumentation
 - Post-Fukushima insights such as actions in advance of External Flooding
 - Timeline & cues from other organizations
- Evaluation or prioritization of proposed plant changes

USA focus has been on Operating Plants where International HRA applications focuses more on Licensing and New Build

Example-2 PRA & HRA Application in The Netherlands

- Part of the 10-Year Periodic Safety Review.
- Level 1 Insights to Reducing Risk:
 - In 2015, plant conducted its 3rd Periodic Safety Review
 - Hardware modifications have eliminated significant operator actions
 - HRA provided insights into staggering calibration
 - Still finding / addressing new challenging, potential initiating events
- Level 2 Insights to Reducing Risk:
 - Impact on Public Health & Safety is important
 - Plant, like all NL industries, has individual risk and societal risk goals
- All Modes, All Hazards PSA:
 - Peer Review.2013

Example-3 PRA & HRA Application in the United Kingdom

Some plants in the General Design Assessment (GDA) phase of licensing.

- PRA (Level 1, 2 & 3 PRAs) is assessed against Regulator requirements as well as the ASME/ANS PRA Standard:
 - Some supporting requirements (SRs) cannot be met by a plant in the design phase.
 - Example, operator interviews.
 - SRs that cannot be met are not assessed.
 - Intent of some SRs can be met.
 - Example by considering generic information or information from similar plant/s.
- Some inputs often need to be assumed to perform HRA:
 - Appropriate operator-information interface will be developed.
 - Procedures will be developed.
 - Operators will be trained to perform their procedures.
 - Such inputs will need to be validated in later phases of design (or transition to operation).
- Inputs available at this stage:
 - Timing & Success criteria

Example-3 PRA & HRA Application in the UK (cont'd)

- Uncertainties in applicability of current HRA methods to digital I&C as well as the digital plant interface.
 - THERP was used based on analog instrumentation & data from 1980's or before
 - New failure modes e.g. "tunnel vision"?
 - CCF of digital interface a concern warranting analog backup I&C for systems important to safe shutdown
 - All HEPs can be considered screening HEPs as many inputs are assumed, so OK for GDA process

• Apparently less reliance on operator actions than earlier generation:

- PRA does not credit operator actions within first 30 minutes per the design basis, but may have to in future iterations if PRA needs them (e.g. ATWS)
- At-Power: About a dozen post-initiator Level 1 operator actions, similar for Level 2
- LPSD: About 10 Level 1 operator actions, no additional operator actions for Level 2
- SFP: Several operator actions for Level 1, with 1 late action for Level 2

Example-4 PRA & HRA Application in the United Arab Emirates

- First 4 plants developing all modes, all hazards PRA as part of the FSAR to support obtaining an operating license.
- Similar experience to the UK (see Example-1):
 - PRA (Level 1, 2 & 3 PRAs) is assessed against Regulator requirements as well as the ASME/ANS PRA Standard.
 - Some inputs often need to be assumed to perform HRA:
 - Inputs available at this stage are limited to Timing & Success Criteria, and some procedures.
 - Uncertainties in applicability of current HRA methods to digital I&C as well as the digital plant interface.
- Generally less reliance on operator actions than the earlier generation:
 - Example, MCR Abandonment is low as the plant essentially has a 2nd MCR.
 - Exception: reduced safety goal levels have increased the importance of beyond design basis events, which has led to the need for more operator actions.

Example-5 PRA & HRA Application in Japan

- Many plants in re-start, or working on re-start.
- Level 1 internal events:
 - In 2015 EPRI provided Risk Professionals training, including HRA.
 - Working on incorporating insights from new methods (IDHEAS).
- Fire PRA:
 - After re-start, some plants working on Fire PRA.
 - Generally follow the NUREG/CR-6850 FPRA approach, including NUREG-1921 guidance.
- Seismic PRA:
 - All have re-evaluated their peak ground acceleration.
 - Looking at HRA improvements to better support larger earthquakes.

Summary of PRA & HRA Insights Internationally

<u>Technically</u>

- HRA needs to support an increased PRA Scope, such as
 - Level 1 Spatial Hazards (internal and external)
 - Examples: Fire, Flood with plant & site impact
 - Examples: Seismic, External Flood, High Winds with regional impact
 - Level 2 & Level 3
 - Shutdown PRA including Spent Fuel Pool PRA
- HRA for Digital Control systems is an issue

Organizationally

- Support for new PRA/HRA practitioners
 - Training
 - Guidelines
 - HRA Tools implementing new/updated methods
- EPRI HRA UG supports each of these

HRA Society

January 2016

Jan Grobbelaar Scientech

Human Reliability Analysis Society

- A new professional society to promote the sharing of research, methods and data.
- A short history:
 - Initial meeting in Seattle at PSAM conference (2010)
 - Follow-up meeting in Honolulu at PSAM'12
 - HRA Master Class in Paris, 2015
 - Largest meeting, ~50 participants from 8 countries
 - Surveyed recent activities
- Members include regulator, research labs, consultants & utility staff.

Vision for the HRA Society

- Support Various Aspects of Human Reliability
 - Human Reliability Analysis as part of PRA for Decision-Making
 - Human Factors
 - Human Error reduction programs

Improve Technical Bases

- HRA methods, data & guidance
- HRA for Digital Control systems
- HRA for increased PRA Scope such as External Hazards & Level 2/3

Support Expansion & Growth

- Support for emerging countries Regulators & Utilities
- Open to new members

HRA Society – Upcoming Events

• PSAM'13, Seoul, October 2-7

- HRA master class/meeting/workshop
- Plenary session
- Evening social event

PSAM Topical Meeting – Germany 2017

- In the planning phase to decide the number of tracks
- HRA methods, data & guidance
- Support Expansion & Growth
 - Looking to expand with "regional" chapters such as USA & EU
 - Looking to support expansion of the nuclear industry

Summary

- PRA & HRA have provided insights to improve decision-making for over 30 years.
- EPRI HRA Calculator[®] approach meets all the current U.S. industry needs for PRAs used in regulatory requirements.
- EPRI HRA UG has 15 years of successful HRA improvements and the approach meets all the current U.S. industry needs for PRAs used in regulatory requirements.
- Approach/methods satisfies the ASME PRA Standard & the NRC Good Practices in Implementing HRA.
- Annual Users Group Meeting January, Juno Beach, Florida
 - Sharing technical improvements & best-practices
- Developing new methods and monitoring research work by others to determine if other improvements can add value to its mission using these criteria:
 - Traceable, Defensible, Consistent
 - Extend HRA beyond Level 1, internal events PRA

Summary (cont'd)

- PRA & HRA provides a structured, systematic approach.
 - Address challenging issues and situations
 - Evaluate with a model
 - Address considerations such as Uncertainty
- A strong Safety Culture considers risk insights and makes risk information available to decision-makers:
 - Plant Design and Engineering
 - Plant Operations, Maintenance, and Training
- PRA process and results (risk-significance) can support Safety Culture.
 - Directly by identification and prioritization of issues based on risk-significance.
 - Indirectly by promoting organizational awareness of risk, to consider the questions asked by PRA - "what is the most likely thing to go wrong" & "what is the most consequential"

EPRI HRA Users Group – Points of Contact

Points of Contact:

- Websites
 - Public website: http://hra.epri.com/
 - HRA UG Support site: http://www.epri.com/hra
 - Used for bug reporting, suggestions, downloads
- HRA Users Group Executive Committee
 - Chair: Mark Averett <u>Mark.Averett@fpl.com</u> 561 694.3857
 - EPRI HRA UG PM: Mary Presley mpresley@epri.com 704 595.2821
 - Scientech PM: Jan Grobbelaar jgrobbelaar@curtisswright.com
 800 862.6702
 - Support: Kaydee Kohlhepp <u>kkohlhepp@curtisswright.com</u> 800 862.6702

Jeff Julius jjulius@curtisswright.com +1 206-248-1818 ext. 230

Jeff Julius jjulius@curtisswright.com 1-800-862-6702 ext.230

27 | February 23, 2016 | © Curtiss-Wright