International Conference on Research Reactors: Safe Management and Effective Utilization Vienna, Austria 16 – 20 November 2015

A Comparative Analysis of the Use of Internet Reactor Laboratory and Subcritical Assembly for Nuclear Engineering Education

Salaheddin Malkawi

Department of Nuclear Engineering Jordan University of Science and Technology (JUST), Jordan *E-mail: salahm@just.edu.jo*

Outline

- Introduction
- Nuclear Engineering Education at JUST
- Internet Reactor Laboratory (IRL)
- Jordan Subcritical Assembly (JSA)
- Summary

Research Reactors' Utilization

- Neutron Activation Analysis
- Radioisotope Production
- Transmutation Effects
- Fuel and Material Testing
- Neutron Imaging
- Neutron Capture Therapy
- Geochronology
- Education and Training

Education and Training in RRs

• Mission:

- Community Service: Provide support and quality usage of the RR facility through the implementation of public tours and visits for public, students, instructors and interested groups.
- Basic and Applied Science: Provide hands on training in support of educational programs in the areas of nuclear science, radiation protection, nuclear instrumentation, and reactor physics.
- Reactor Design and Operation: Provides training in support of the design and operation of nuclear power plants
- Radiation Protection: Versatile tools for education and training in operational radiation protection
- Every research reactor, regardless of its power, can be utilized for education and training.

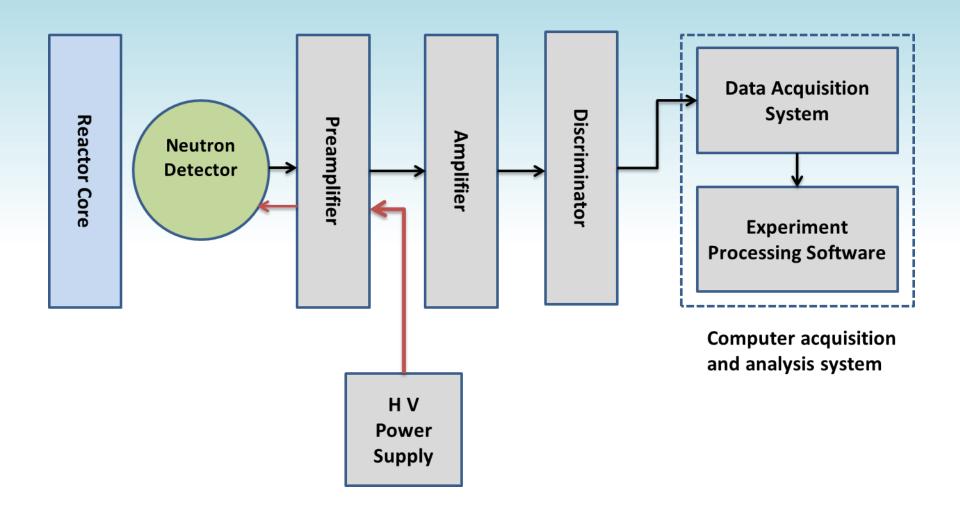
Utilization of RRs in Nuclear Eng. Education

- Reactor Physics Laboratory Education
 - Static reactor parameters
 - Kinetic reactor parameters
 - Facility characterization
- Experiments on Neutron Activation Analysis
- Experiments on Isotope production
- Experiments on extracted neutron beam applications
- Operator training for nuclear Engineering students
- Training of future reactor operators

Measurement Systems

- Static Experiments:
 - Online measurement system: miniaturized neutron detector
 - Offline measurement system: activation foils
- Dynamic experiments:
 - Based on the solution of the point reactor kinetics equations under different conditions

$$\frac{dn(t)}{dt} = \frac{\rho(t) - \beta}{\Lambda} n(t) + \sum_{i=1}^{6} \lambda_i C_i(t) + S....(1)$$


$$\frac{dC_i(t)}{dt} = \frac{\beta_i}{\Lambda} n(t) - \lambda_i C_i(t)...(2)$$

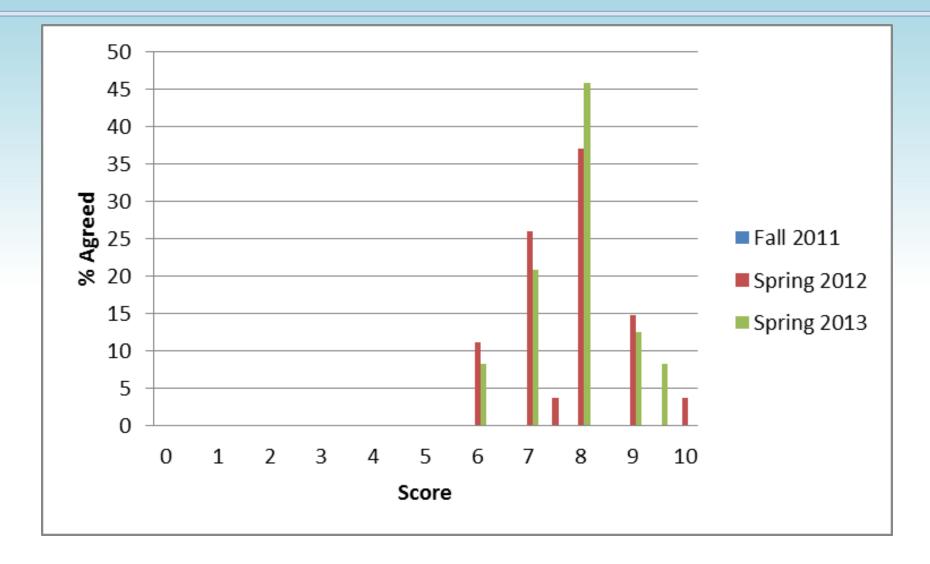
Dynamic Reactor Parameters' Measurements

Nuclear Engineering Education at JUST

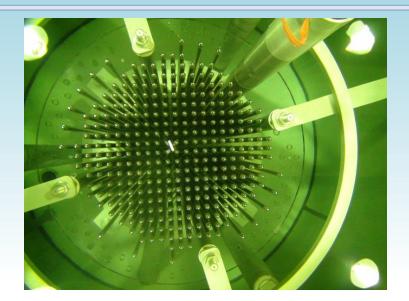
- B. Sc. Program started at JUST in 2007
- Graduates: 115
- Students: 100
- Faculty Members: 8
- Facilities:
 - High Performance Computing lab.
 - Radiation Detection and Measurement Labs.
 - Internet Reactor Lab. (IRL)
 - Jordan Subcritical Assembly (JSA)
 - Jordan Research and Training Reactor (JRTR).
 Expected to be operational in mid 2016.

Internet Reactor Lab (IRL)

https://www.iaea.org/OurWork/ST/NE/NEFW/Videos/repository/2014-03-03-RRS-Bradley-2.html

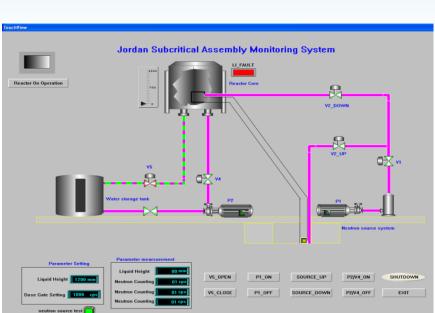

IRL: Utilization at JUST

- NE 448 Nuclear Reactor Laboratory course (2010 2013)
- Typical Experiments
 - Reactor startup exercise
 - Approach to criticality: 1/M approach
 - Control rod worth measurement
 - Flux mapping
 - Power coefficient measurement
- Course Assessment
 - Pre-Lab assignment
 - In-class experiment
 - Post-Lab report and discussion of results
 - Mid term and final exams
 - Students' Evaluation

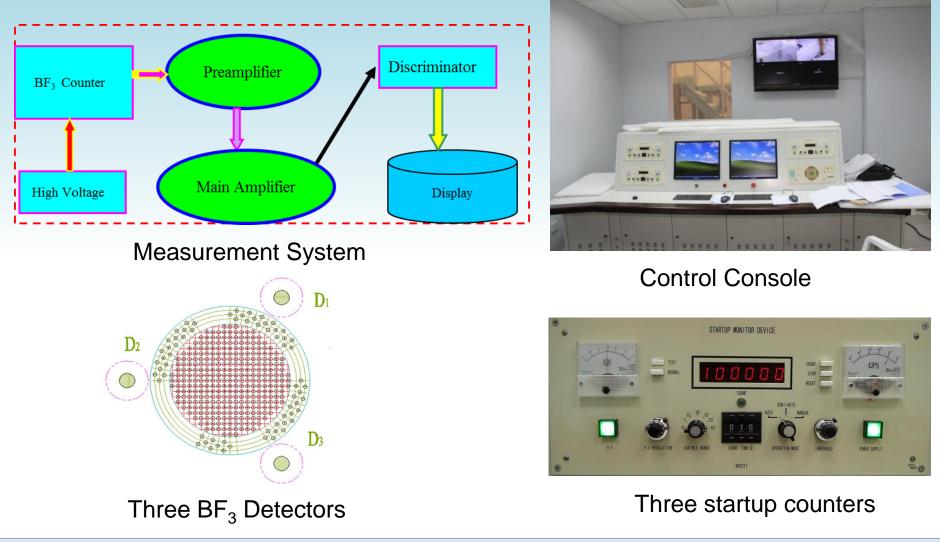

IRL: Students' Overall Evaluation

Jordan Subcritical Assembly (JSA)

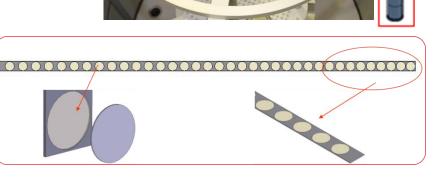
- Jordan's first Nuclear facility.
- Designed and constructed for the purpose of education, training, and experimental research.
- Inherently safe
- Design Specifications:
 - Uranium Fuelled (3.4% U-235)
 - Uranium Oxide (UO_2) with Zr-4 cladding
 - Light Water Moderated
 - Sub-critical State (k_{eff} \cong 0.95)
- Commissioned in June 2013

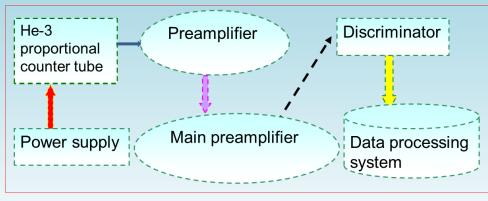


JSA: Control and Monitoring System

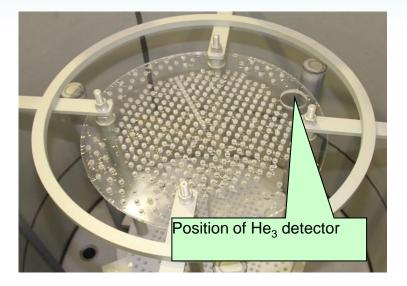


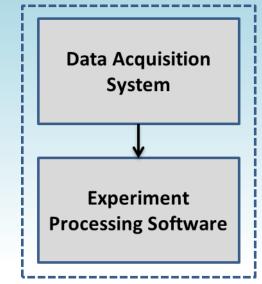
Employs modern digital Instrumentation and Control


JSA: Measurement System

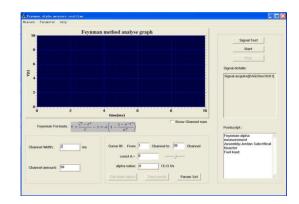

JSA: Utilization for Education

- NE 448 Nuclear Reactor Laboratory course (2014 present)
- Typical Experiments
 - Start up and approach to critical experiments
 - Static experiments
 - Axial neutron flux distribution measurement
 - Radial neutron flux distribution measurement
 - Absolute neutron flux distribution measurement
 - Dynamic experiments
 - Source-jerk method
 - Rossi- α method
 - Feynman- α method





JSA: Setup for Dynamic Experiments



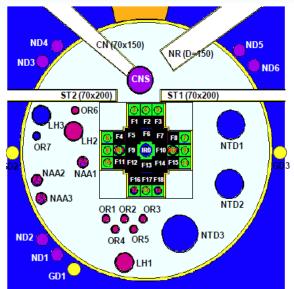
Online Measurement system

Computer acquisition and analysis system

JSA: Course Assessment

- NE 448 Nuclear Reactor Laboratory course (2014 present)
- Course Assessment
 - Pre-Lab assignment
 - In-class experiment
 - Post-Lab report and discussion of results
 - Mid term and final exams
 - Students' Evaluation
- Course objectives and learning outcomes are attainable.

Jordan Research and Training Reactor (JRTR)


• Overview:

- 5-MW upgradeable to 10-MW
- Open pool
- MTR, plate type fuel (<20% U^{235})
- H₂O cooled
- D_2O + Be reflected

• Applications

- Neutron Beam Applications
- Radioisotope Production
- Neutron Transmutation Doping
- Neutron Activation Analysis
- Plays the primary role in educating and training the upcoming generations of nuclear engineers and scientists
- Irradiation in support of industrial, agricultural and health/medical infrastructure
- Expected to be operational by mid 2016

Summary

- Every research reactor facility, regardless of its power, can be utilized for education and training.
- The IRL approach benefits from an already existing RR facility in another location by utilizing it as a remote reactor laboratory.
- An on campus reactor facility provides education, training, experimental research and hands on experience for students and trainees.
- Nuclear Reactor Laboratory course objectives and learning outcomes are attainable by both approaches.
- For Nuclear Engineering Education, the need is to have an access to a research reactor facility.

Thank you...

... for your attention

