

23rd WiN Global Annual Conference

24-28 August 2015, Vienna, Austria

RADIATION DOSE TO PATIENTS AND MEDICAL STAFF IN DIFFERENT PROCEDURES OF NUCLEAR MEDICINE

Dimcheva M, Sergieva S

Sofia Cancer Center, Department of Nuclear Medicine, Sofia BULGARIA

PURPOSE: The purpose of this study is to provide information on developing technologies and clinical techniques for hybrid SPECT/CT imaging using ionizing radiation and their associated radiation dose to patients and medical staff.

METHODS: A thermoluminescent dosimeters (TLD) was used in this study to analyze the historic records of the external radiation doses to staff members working in our medicine department in 7 procedures, including elution of 99mTc from 99mMo/99mTc generators, syringe pre paration, radiopharmacy kit preparation, injection, acco mpanying patients, SPECT/CT scan, oral I-131 preparation. A retrospective review of 110 clinical studies of various nuclear medicine procedures obtained on hybrid SPECT/ CT systems was performed to calculate the effective radiation dose to patients.

Effective dose from CT (mSv)			Effective dose from nuclear medicine examination (mSv)	
^{99m} Tc–MIBI Tetrofosmin	$E = 2,3 \pm 1,4$		E = 6,4 ±0,1mSv (mean A=666MBq ^{99m} Tc MIBI)	
^{99m} Tc-MDP Bone scan	$E = 1,7 \pm 1,4$		E = 1,6 ±0,6 mSv (mean A=740MBq ^{99m} Tc- MDP)	
^{99m} Tc–Tektrotyd	$E = 4,9 \pm 1,4$		E = 4,6±1,8 mSv (mean A=740MBq ^{99m} Tc-Tektrotyd)	
^{99m} Tc–Thyroid	$E = 1,9\pm0,8$		$E = 2,8 \pm 0,4 mSv$ (mean A=74 MBq ^{99m} Tc Pertechnetate)	
^{99m} Tc-Nanocoll	$E = 1,8\pm0,2$		E = 3,8 ±0,4 mSv (mean A=148MBq ^{99m} Tc - Nanocoll)	
¹³¹ I–Nal Thyroid	$E = 1,4\pm0,5$		E = 2,7±0,4 mSv (mean A=185MBq - ¹³¹ I Nal)	
STAFF	YEAR	Mean Hp(0.07) ± SE (range), mSv	E Mean Hp(10) ± SE (range), mSv	
NM physician 1	2012	1.03 ± 0.03 (0.12 – 1.58	3) $1.05 \pm 0.03 (0.10 - 1.78)$	
NM physician 2	2012	0.96 ± 0.03 (0.68 – 2.75	$5) \qquad 1.06 \pm 0.03 (0.07 - 1.49)$	
NM technician 1	2012	1.05 ± 0.01 (0.84 – 3.96		
NM technician 2	2012	1.94 ± 0.01 (0.08 – 2.92	<u>, </u>	
Radio-pharmacist	2012	2.60 ± 0.13 (0.14 – 2.96		
Medical physicist	2012	$0.90 \pm 0.04 (0.08 - 2.35)$		
Auxiliary personnel	2012	1.03 ± 0.01 (0.08 – 2.86	5) $1.05 \pm 0.01 (0.08 - 1.81)$	
STAFF	YEAR	Mean Hp(0.07) ± SE (range), mSv	Mean Hp(10) ± SE (range), mSv	
NM physician 1	2013	1.29 ± 0.03 (0.11-1.96)	1.06 ± 0.03 (0.10 - 1.88)	
NM physician 2	2013	1.56 ± 0.04 (0.19 – 1.85)	1.12 ± 0.03 (0.08 - 1.63)	
NM technician 1	2013	$1.10 \pm 0.03 (0.91 - 3.76)$	1.07 ± 0.04 (0.18 - 3.10)	
			$1.07 \pm 0.04 (0.10 - 5.10)$	
NM technician 2	2013	0.99 ± 0.02 (0.70 – 3.82)	$1.07 \pm 0.04 (0.18 - 3.10)$ $1.00 \pm 0.03 (0.08 - 2.95)$	
	2013 2013	$0.99 \pm 0.02 (0.70 - 3.82)$ $1.00 \pm 0.08 (0.19 - 3.77)$	· · · · · · · · · · · · · · · · · · ·	
NM technician 2		. ,	1.00 ± 0.03 (0.08 - 2.95)	
NM technician 2 Radio-pharmacist	2013	1.00 ± 0.08 (0.19 – 3.77)	1.00 ± 0.03 (0.08 - 2.95) 1.03 ± 0.06 (0.20 - 3.43)	

RESULTS: The average effective doses (mSv) from low dose CT and radiofarmaceuticals for each examination of our results are presented in Table 1. The results for doses (E) mean \pm SD in SPECT/CT examination are given in Table 2.

STAFF	YEAR	Mean Hp(0.07) ± SE (range), mSv	Mean Hp(10) ± SE (range), mSv
NM physician 1	2014	0.93 ± 0.02 (0.10 – 1.26)	1.05 ± 0.01 (0.11 - 1.56)
NM physician 2	2014	0.88 ± 0.01 (0.09 – 1.52)	1.06 ± 0.02 (0.06 - 1.63)
NM technician 1	2014	1.12 ± 0.10 (0.81 – 2.35)	1.04 ± 0.06 (0.07 - 2.59)
NM technician 2	2014	1.14 ± 0.05 (0.08 – 2.5)	$1.00 \pm 0.01 (0.10 - 2.71)$
Radio-pharmacist	2014	2.05 ± 0.13 (0.16 – 4.16)	1.84 ±0.11(0.27 - 2.96)
Medical physicist	2014	0.79 ± 0.04 (0.09 – 2.10)	1.54 ± 0.03 (0.05 - 2.24)
Auxiliary personnel	2014	1.05 ± 0.03 (0.08 – 1.93)	1.05 ± 0.01 (0.04 - 1.21)

Table 3. The mean annual occupational exposure dose ± SE

Table 1. The average effective doses from low dose CT and radiofarmaceuticals

The historic records of the external radiation doses to staff members working in our nuclear medicine depart - ment for the past three years (2012-2014) was analyzed and shown on Table 3.

CONCLUSION: The results from this study showed that annual effective radiation doses to nuclear medicine staff members were within permissible levels. The increases in effective doses from SPECT/CT study is considered clinica lly acceptable in view of the diagnostic benefits of the CT.