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Description of the estimation problem  

It’s necessary to estimate the unknown vector of parameters 


  on the basis 

of results of  n  measurements iy  of the model function ),x(f 


  

iii ),x(fy  


 ,               n,...,i 1 .   

The  results  of  the  measurements  are  distorted by the experimental errors 

i  . The variations of the experimental errors are described by the 

covariances  ijV  

),cov(V jiij        

The model function ),x(f 


 is an element of a vector space of dimension L  

. 

 



Interpretation of the estimation process
 

 The set of the experimental data  iy ,  n,...,i 1   with  covariances ijV   

can be interpreted as a system of  n  particles with coordinates  iy      ; 

the interaction between particles is described by the values ijV  

 

 in turn, statistical processing (application of LSM) can be interpreted 

as a transition F  of the n – particle  system  from one state  ( iy ,  ijV  )   

to another  one   ( iŷ ,  ijR  )   :   

:F        ( iy ,  ijV  )            ( iŷ ,  ijR  ) 

 

 we are looking for quantities which are stay unchanged at transition  

 



Definition of a scalar product. 

A scalar product in the normalized vector space  Ω  can be defined as follows 

)x(f)V)(x(f)x(f)x(f jl
i j

ijiklk 



1

 

Such the definition meets all the requirements for the scalar product 

 commutativity 

 distributivity 

 uniformity 

 positive definiteness   (if  V  -  positive definite matrix) 



Representation of the model function through the basis functions 

If   a set of functions  )x(),...,x( L 10     form  a basis in the space  Ω  then 

the function  ),x(f 


   can be represented as a linear combination of these 

functions   







1

0

L

m
mm )x(),x(f 


 

Using the standard procedure of orthogonalization it’s possible to transform 

the initial basis  )x(),...,x( L 10    into the orthogonal one   )x(),...,x(
L 10 

  

kllk )x()x(    

Correspondingly,  the model function takes the form 


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m
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Estimation problem after transformation of the basis

After orthogonalization of the basis in the space  Ω   the regression equation 

can be written as follows  

im

L

m
mi )x(y   





1

0

 ,               n,...,i 1 . 

     ),cov(V jiij        

where the basis functions )x(),...,x(
L 10 

   are orthogonal ones, 


 - vector 

to be estimated. 

Thus, the initial estimation problem with an arbitrary model function 

from the space  Ω  was reduced to the problem with a linear model function.   

 

 



The LSM estimate 

The LSM estimate 
̂

 with the covariance matrix W for the linear model 

function is well known  
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  is the matrix of the 

sensitivity coefficients. 

The covariance matrix of estimated values  
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of the model function is given by the following expression 

T
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Representation of the LSM estimate in the
orthonormal basis
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Statistical invariants

There are strict relationships between the characteristics of the system in

original and final states (for nonlinear model function the relationships are

approximate)

where weights are determined as follows

Thus, the evaluated values and their covariances are result of a

redistribution of the experimental values and their covariances .

The redistribution is managed by the weights .
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Interpretation of weights
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Interpretation of the statistical invariants

The invariants have a clear statistical interpretation
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Side results during the derivation process

 Trace of the   matrix   RV-1   is equal to the  dimension   L     of   the    basis      

( =  dimension of the vector space Ω ) :    )RV(Tr
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Useful enequalities for the experimental covariances

from positivity of weights

from positivity of variance

of the physical quantity
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Example 1

     Ω – the space of polynomials of degree lower than L  

1. Basis     )x(),...,x( L 10  : 

          1,     x , …,      
1L

x         

2. Orthonormal basis )x(),...,x(),x(
L 110 

    is constructed as follows 
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where  coefficients   
110 j

...,,    are   calculated  from requirements of 

orthogonality 
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Example 2
 

Ω – the space of piece-wise constant functions  
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Example 3

 

Ω – the space of continuous functions  in the range under consideration 

 As known any continuous function can be uniformly approximated by a 

sequence of polynomials 
 

 As already shown for any function from the finite-size polynomial space 

the statistic invariants are true 
  

 Consequently, it should be expected that for continuous functions the 

statistic invariants will be approximately true. 



Checking the statistical invariants.
Evaluation of the Be9(d,α0) reaction cross-section
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  Рис.6  Экспериментальные данные по сечению реакции  9Be(d,a0) из библиотеки EXFOR
              после корректировки в сравнении оцененным сечением.
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Evaluation of the 9Be(d,α0) reaction cross-section. 

Checking the statistical invariants  
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Statistical invariants. Example. 
Evaluation of the 9Be(d,α0) differential reaction cross-section at 

deutron energy 3 MeV. Results of measurements [2]

 

angle, 
grad 

c-section, 
mb/ster 

Uncertainty,%  
Angle, 
grad 

c-section, 
mb/ster 

Uncertainty,%  

17.7 5.01 10 90.2 3.28 8 
23.5 4.87 7 100.4 3.22 7 

35.2 4.37 7 110.2 3.09 7 

40.9 4.13 7 119.8 2.60 8 
46.7 3.72 7 129.0 1.90 8 

57.9 2.87 7 137.9 1.73 7 
69.0 2.81 7 146.7 1.34 7 

79.7 3.14 8 163.5 1.46 9 
 

[2] Generalov L.N. et al., “LI Meeting on Nuclear Spectroscopy and Nuclear
Structure”, P. 187. Sarov, RFNC-VNIIEF, 2001 [in Russian], EXFOR F0530



Statistical invariants. Example. 
Evaluation of the 9Be(d,α0) differential reaction cross-section at 

deutron energy 3 MeV. Plot of the experimental data
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Рис.2  Оцененное дифференциальное  сечение реакции 9Be(d,a0) в сравнении с эксперименталь-
            ными данными Генералов 2001 при энергии дейтронов 3 МэВ.

Генералов 2001

E = 3 МэВ



Statistical invariants. Example. 

Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Evaluated coefficients of  Legendre polynomial   

.  

 𝜽𝟒
𝟎 𝜽𝟒

𝟏 𝜽𝟒
𝟐 𝜽𝟒

𝟑 𝜽𝟒
𝟒 

2.968 1.464 0.01839 1.020 0.8686 
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Statistical invariants. Example. 

Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Covariances (x1000) of evaluated coefficients of  Legendre polynomial 
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 Number  0 1 2 3 4 
        

𝜽𝟒
𝟎 0  3.517     

𝜽𝟒
𝟏 1  1.770 7.577    

𝜽𝟒
𝟐 2  -1.874 4.912 17.55   

𝜽𝟒
𝟑 3  1.238 0.3945 6.929 23.78  

𝜽𝟒
𝟒 4  2.701 0.1747 -0.7937 10.96 24.58 

 



Evaluation of the 9Be(d,α0) differential reaction cross-section. 

Checking the statistical invariants  
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Summary

• Input experimental data (results of measurements and their covariances)

predetermine the evaluated data and their covariances calculated by the

LSM for the model function;

• Weighted sum of elements of the covariance matrix is a natural measure

of the integral uncertainty for the random vector.

• As follows from the conservation laws relative decreasing (increasing)

uncertainties of the evaluated data leads to pumping uncertainty

information into the off-diagonal covariances

• strict relationships between input experimental data and output

evaluated data, restrictions imposed to the covariances of the

experimental errors provide verification both the final and intermediate

results of calculations



Some statements of the DDEP methodology 
“to correct” results of the evaluation 

• Uncertainty of the recommended value can not be lower the most

accurate uncertainty of the experimental data

• If contribution of some measurement into statistical sum is larger than

50% than uncertainty of this result of the measurement is expended to

get the 50% contribution.


