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Description of the estimation problem

It’s necessary to estimate the unknown vector of parameters ,3 on the basis

of results of n measurements y; of the model function f(X,,E)
yi:f(xi’ﬁ)+5i; i=1,...,n,

The results of the measurements are distorted by the experimental errors

g . The variations of the experimental errors are described by the

covariances V;;

Vi =cov(g,¢;)

The model function f(X,ﬁ) is an element of a vector space of dimension L



Interpretation of the estimation process

e The set of the experimental data y;, i =1,...,n with covariances Vij

can be interpreted as a system of n particles with coordinates y; ;

the interaction between particles is described by the values Vij

e in turn, statistical processing (application of LSM) can be interpreted

as a transition F of the n — particle system from one state (V;, Vij )

to another one (Y;, R;) :
Fooo(yi, Vi) = (Vi Ry)

e we are looking for quantities which are stay unchanged at transition



Definition of a scalar product.

A scalar product in the normalized vector space €2 can be defined as follows

<fk(7()‘ f.(>'<’)>=ZZ fi (X )(V_l)ij f(x;)
j

i
Such the definition meets all the requirements for the scalar product

e commutativity
e distributivity
e uniformity

e positive definiteness (if V - positive definite matrix)



Representation of the model function through the basis functions

If a set of functions @y(X),...,¢, ;(X) form a basis in the space £2 then

the function f(x,8) can be represented as a linear combination of these

functions
. L-1
f(X.8)= 2 Vn@n(X)
m=0

Using the standard procedure of orthogonalization it’s possible to transform

the initial basis @y(X),...,, _1(X) intothe orthogonalone w (X),...ix (X)

Wi (X) - w, (X)) = &

Correspondingly, the model function takes the form

f(x.8)=9(x0)= X 0pn(X)
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Estimation problem after transformation of the basis

After orthogonalization of the basis in the space £2 the regression equation

can be written as follows

L-1
yizzemwm(x)—l—gi, 1=1,....n.

m=0
Vi =cov(é,é&;)

—

where the basis functions w,(x),...,tv,_,(x) are orthogonal ones, & - vector
to be estimated.

Thus, the initial estimation problem with an arbitrary model function

from the space £2 was reduced to the problem with a linear model function.



The LSM estimate

A
—

The LSM estimate & with the covariance matrix W for the linear model

function is well known

6 =(XTVIX)txTVv 1ty

W=(X"v'x)*

a{ > O x)}
m=0

where X;; = or(x,p(9)) = «—x. Iis the matrix of the
00, . 00, ‘
-]
sensitivity coefficients.
4 4 L-1
The covariance matrix of estimated values y, = f(%,,8(0))= > 6. v, (X)
m=0

of the model function is given by the following expression

~ A~ T
R; =cov(y;,y;)= XWX



Representation of the LSM estimate in the
orthonormal basis

5: XTV_ly'
W=E (W = 225000 w0) = da)
i=1j=1
R=XX"
where
L-1
Lo 5 p
x. 9 (x,5(0)) {Z mwm(x)}

) 06, ‘x=x,— =y;(X;)

: 06,

X:xj



Statistical invariants

There are strict relationships between the characteristics of the system in
original and final states (for nonlinear model function the relationships are

approximate)

Zciyi=20iyi ZZcRc = 2eVie,
where weights C; are determined as follows
Z(V s
ZZ(V i

Thus, the evaluated values yi and their covariances R, areresult ofa

redistribution of the experimental values Yy, and their covariances V; .

The redistribution is managed by the weights C;



Interpretation of weights

-1
Z(V )ji a share of overall information on
' the uncertainty of the multipoint

C =
| (V —1) N system related to the point i
z : z : j
k]




Interpretation of the statistical invariants

The invariants have a clear statistical interpretation

Average (weighted in special way) value of the
Zci yi = Zci Yi model function in the range under
| |

consideration

Variance of the average (weighted in special

2.2 CR.c,=>cV,c;, way) value of the model function in the range
i i

under consideration



Side results during the derivation process

Trace of the matrix RV isequaltothe dimension L of the basis

(= dimension of the vector space Q): Tr(RV _1) =L

n

2 (RVT) = Zn:Zn:Rij(V_l)ji =

i=1 i=1 j=1

ii{zwk(x WX )}(v )y =

i=1 j=1 (k=

x
T M:
H

- { > v (X)(V ),.m(x)} Yo =L

=1



Useful enequalities for the experimental covariances

Z(V_l)ji
‘ >0
XXV,

from positivity of weights

1 from positivity of variance
2.2V )ik >0
k]

of the physical quantity



Example 1

Q — the space of polynomials of degree lower than L

1. Basis  @o( X),...,o, ;(X):

1, X, o, X
2. Orthonormal basis  w (x),w,(X),....yv  _,(X) is constructed as follows

ﬂWj(X):(X_ajfl)ijl(X)_aj,2Wj,2(X)_"'—aOWO(X)

where coefficients «,,a,...,a;; are calculated from requirements of

orthogonality
(W (x)yw(x)=0, k=1..j-1
or

<Xl//j—1(x)'l//k(x)>
o, =
<l//k(x)'l//k(x)>

k=1,.,j—1



Example 2
Q — the space of piece-wise constant functions

f(x.B)=8 if xe[x % ) K

1. Basis  @y( X),..., o, 1(X):

— 1 I XE[XIk, 'k+1)
o (x) = {0 if Xg[x.k’ Ikl)



Example 3

Q —the space of continuous functions in the range under consideration
e As known any continuous function can be uniformly approximated by a
sequence of polynomials

e Asalready shown for any function from the finite-size polynomial space

the statistic invariants are true

e Consequently, it should be expected that for continuous functions the

statistic invariants will be approximately true.



Cross-section, mb

Evaluation of the Be9(d,a0) reaction cross-section
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Evaluation of the 9Be(d,a0) reaction cross-section.

Checking the statistical invariants

Scy,mb  >cy,mb Y cVic;mb? X3 cRyc;,mb°
i i o b

0.4548-10°  (0.4548-10°° 0.8793-10°° 0.8793-107°



Statistical invariants. Example.
Evaluation of the 9Be(d,a0) differential reaction cross-section at
deutron energy 3 MeV. Results of measurements [2]

agnrgalj, C:E;Z';:' Uncertainty,% Agnrglj, C:E;Z'tc::’ Uncertainty,%
17.7 5.01 10 90.2 3.28 8
23.5 4.87 7/ 100.4 3.22 7
35.2 4.37 7/ 110.2 3.09 7
40.9 4.13 7/ 119.8 2.60 8
46.7 3.72 7/ 129.0 1.90 8
57.9 2.87 7/ 137.9 1.73 7
69.0 2.81 7/ 146.7 1.34 7
79.7 3.14 8 163.5 1.46 9

[2] Generalov L.N. et al., “LI Meeting on Nuclear Spectroscopy and Nuclear

Structure”, P. 187. Sarov, RFNC-VNIIEF, 2001 [in Russian], EXFOR F0530




Statistical invariants. Example.

Evaluation of the 9Be(d,a0) differential reaction cross-section at
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Statistical invariants. Example.
Evaluation of the 9Be(d,a0) differential reaction cross-section.

Evaluated coefficients of Legendre polynomial

o(1,E) =Y 0y P (1)

=0

03 04 03 03 03

2.968 1.464 0.01839 1.020 0.8686




Statistical invariants. Example.
Evaluation of the 9Be(d,a0) differential reaction cross-section.

Covariances (x1000) of evaluated coefficients of Legendre polynomial

o(1,E) =Y 0y P (1)

=0

Number 0 1 2 3 4
09 0 3.517
th 1 1.770 7.577
05 2 -1.874 4.912 17.55
o3 3 1.238 0.3945 6.929 23.78
0; 4 2.701 0.1747 -0.7937 10.96 24.58



Evaluation of the 9Be(d,a0) differential reaction cross-section.

Checking the statistical invariants

mb mb?

ZCiyi,— ZC ZZCI ij~j? IJ J’Sterz

i ster 5 ster®

2.260 2.260 2.091-3 2.091-3




Summary

Input experimental data (results of measurements and their covariances)
predetermine the evaluated data and their covariances calculated by the
LSM for the model function;

Weighted sum of elements of the covariance matrix is a natural measure
of the integral uncertainty for the random vector.

As follows from the conservation laws relative decreasing (increasing)
uncertainties of the evaluated data leads to pumping uncertainty
information into the off-diagonal covariances

strict relationships between input experimental data and output
evaluated data, restrictions imposed to the covariances of the
experimental errors provide verification both the final and intermediate
results of calculations



Some statements of the DDEP methodology
“to correct” results of the evaluation

Uncertainty of the recommended value can not be lower the most
accurate uncertainty of the experimental data

If contribution of some measurement into statistical sum is larger than
50% than uncertainty of this result of the measurement is expended to
get the 50% contribution.



