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Background 

JET-C up to 2009 

 Mainly unfuelled plasma up to 

3.8MA with good confinement 

 Above 3.8MA  high gas dosing to 

mitigate 1MJ ELMs 
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JET-ILW 2012 

 Development reached 3.5MA, 

although reduced confinement 

Aim JET-ILW 2014 

 Recover confinement  

 Achieve 4MA 
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Outline 

 

 Scenario choices/strategies 

 Integration into the scenario of: 

 Control of W core accumulation  

 Divertor heat load control 

Confinement 

Summary and future prospects 
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V. Riccardo et al. Phys. Scripta  2010 
Ph. Mertens et al. J. Nucl. Mater 2013 

Bulk W divertor  

 Surface temperature limit: 1000oC 

 Heat flux factor: 35 MJm-2s-1/2  

 Energy limit: 60 MJm-2 or stack 

Be limiter 

Bulk W 

divertor  

Solid Be limiter  

 Surface temperature limit: 900oC 

 Heat flux factor: 22 MJm-2s-1/2  

W-coated CFC divertor tiles 

 Surface temperature limit: 1200oC 

 Energy limit: 250 MJ  / row 

W-coated  

CFC   20µm W on top 

5 

Operational limits on JET PFCs 
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Scenario choices and strategies 

Scenario optimised for  

 Minimum disruption force – minimise PF currents 

 Maximum Ip within currents coils constraints  

low triangularity 

 Maximise q95 for given Ip/BT  large volume 

 Avoid plasma-wall contact 

> 4cm 

> 2.5cm 

4MA H-mode  ~500-700 tones + ~20MJ of energy  

Margin of a factor of 2 against serious damage to the vessel 
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Scenario choices and strategies 

Special care 

 IP ramp-up  low li to optimise volume  

 IP ramp-down (high li) balance between  

 fast Ip ramp-down  reduce disruption forces 

 Shrink plasma to avoid wall contact  

increase PF  increase disruption forces 

 Disruption avoidance 

 Early detection of off-normal events 

 MGI if disruption unavoidable 

> 4cm 

> 2.5cm 
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High-Z impurity accumulation 

Most common cause of off-normal event  High-Z impurity accumulation 

(50% likely to disrupt) 

 NBI switch-off 

 ELM frequency decreases 

 W concentration in core increases  

 temperature profiles become hollow 

after sawteeth stop 

 current profile becomes hollow and 

an n=1 mode grows until it triggers 

the MGI.  

 Early detection of radiation peaking 

choice of alarm level: 

too early  vs.  too late 

work in progress … 



I Nunes 9 (20)                    25th IAEA FEC , St. Petersburg, Russia     13th -18th October 2014 

Outline 

 

 Scenario choices/strategies 

 integration into the scenario of: 

 Control of W core accumulation  

 Divertor heat load control 

 Confinement 

 Summary and future prospects 
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Control of W accumulation – gas 

Gas puffing 

 Increases ELM frequency to control W reaching the plasma core 

 Stationary discharges although at reduced confinement 

#86587 
#86534 
#86538 
#86586 

85Hz 

52Hz 
25Hz 
16Hz 

#86582 

68Hz 

(1022/s) 

2.5MA/2.35T 
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Control of W accumulation - ICRH 

 ICRH heating  increases core electron temperature and maintain 

sawteeth activity  expel W from core E Lerche EX/P5-22  

RF frequencies        BT constraints  

          (q95=3) 

 

H minority off-axis 

 Effective if resonance inside q=1 

surface 

 

He3 minority on-axis 

 Similar results to H minority (off-axis, 

inside q=1 surface) at ~8% He3 
concentration  small impact on 

performance 

 

 

 

3.0MA 
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Outline 

 

 Scenario choices/strategies 

 integration into the scenario of: 

 Control of W core accumulation  

 Divertor heat load control 

 Confinement 

 Summary and future prospects 
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Divertor heat load control 

JET has restrictive operation limits for bulk W and W coated CFC tiles  pulse 

length at high power at high plasma current 

 

  

 

 

Extrinsic impurities 

 N2 not compatible with DT 
operation  Tritium plant at JET 

 Ne: Small reduction of target 

surface temperature 

 

#87404 #87215 #87218 

Strike point sweeping at 4Hz 
 4cm sweeping  strong reduction 

of surface target temperature 

2.5MA/2.35T 
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w/o Ne 

Ne 

Ne + sweep 

Sweep w/o Ne  

Ne 

Ne + sweep 

 Range of D2/Ne narrow transitions to ELM-free followed by type III ELMs 

 Small change PradDIV/Prad,TOT with Ne injection observations of small 

reduction of target surface temperature 

 Experiments at 3.5MA show no increase of Prad,div  

Divertor heat load control – Ne 

C Giroud Ex/P5-25  
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 Scenario choices/strategies 

 integration into the scenario of: 

 Control of W core accumulation  

 Divertor heat load control 

 Confinement 

 Summary and future prospects 
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cryopump 

Confinement (strike point position) 

 Strike points close to pump throat   

 operate at lower pedestal density  higher pedestal temperature  

 As a consequence confinement improves (still need for gas puffing) 
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Pedestal and core behaviour 

 Pedestal - Similar pedestal pressure but higher pedestal temperature 

when strike points closer to pump throat   

 Core - higher density peaking due to lower collisionality  higher core 

pressure 

pedestal core 

E de la Luna EX/P5-29 E Joffrin EX/P5-40 C Maggi EX/3-3 
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Pedestal behaviour for increasing Ip 

 JET-C: both Te,ped and ne.ped 

increase with Ip 

 At similar Ip/BT the pedestal 

pressure is considerable lower 
than that on CFC 

 Hybrid scenario shows that 
with high Padd is possible to 
get higher Te,ped  higher 

confinement 

 Density similar to JET-C but Teped, 

below ~1.2keV for Ip>2.5MA 
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Confinement dependence on PIN 

 H98(y,2) is seen to strongly increase for bN,th above ~1.6 with a fast rise of the 

pedestal pressure, mainly due to the increase of the pedestal temperature  

 

C Challis EX/9-3 

 

 Achievement of good 

confinement at high Ip/BT 

strongly dependent on power 

(and gas dosing) 

 

q95=3 
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Summary 

 Optimised plasma termination 

and the detection of off-normal 

events 

 Used gas dosing and ICRH to 

control W accumulation  

 Optimised confinement by 

increasing pedestal temperature 

 Achieved H98(y,2)~1 at 2.5MA (like 

JET-C)  

 Achieved stationary conditions 

up to 4MA/3.73T (PTOT=27MW) 

q95=3 
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Prospects 

FEC 2016 

 Further optimisation is a primary 

goal for 2015/2016 campaigns 

 Higher available additional 

power 32MW NBI + ~10MW RF 

 Reduce gas dosing 

 Explore other extrinsic impurities 

for divertor heat load control  

 Minimise gas fuelling to improve 

confinement by introducing 

fuelling with pellets  

q95=3 


