Compatibility of high performance scenarios with ILW

JET Culham Science Centre Abingdon, OX14 3DB, UK I Nunes¹, I Balboa², M Baruzzo³, C Challis², P Drewelow⁴, L Frassinetti⁵, D Frigione³, J Garcia⁶, J Hobirk⁷, E Joffrin⁶, P J Lomas², E de la Luna⁸, C Lowry⁹, F Rimini², ACC Sips⁹, S Wiesen¹⁰ and the JET contributors^{*}

JET, Culham Science Centre, Abingdon, OX14 3DB, UK

¹Instituto de Plasmas e Fusão Nuclear, IST, Universidade de Lisboa, Portugal
²CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
³ENEA, Consorzio RFX Padova, Italy
⁴ Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, D-17491, Germany
⁵VR, Fusion Plasma Physics, EES, KTH, SE-10044 Stockholm, Sweden,
⁶CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
⁷Max-Planck-Institut für Plasmaphysik, D-85748 Garching, Germany
⁸Laboratorio Nacional de Fusion, CIEMAT,28040, Madrid, Spain
⁹European Commission, Brussels, Belgium
¹⁰Institut fuer Energie-und Klimaforschung, IEK-4, FZJ, TEC, 52425 Julich, Germany

Background

JET-C up to 2009

- Mainly unfuelled plasma up to 3.8MA with good confinement
- Above 3.8MA → high gas dosing to mitigate 1MJ ELMs

JET-ILW 2012

 Development reached 3.5MA, although reduced confinement

Aim JET-ILW 2014

- Recover confinement
- Achieve 4MA

I Nunes 3 (20)

- ♦ Scenario choices/strategies
- Integration into the scenario of:
 - Control of W core accumulation
 - Divertor heat load control
- Confinement

I Nunes 4 (20)

Summary and future prospects

○ EFJEA

Operational limits on JET PFCs

Be limiter

Solid Be limiter

- Surface temperature limit: 900°C
- Heat flux factor: 22 MJm⁻²s^{-1/2}

V. Riccardo et al. Phys. Scripta 2010 Ph. Mertens et al. J. Nucl. Mater 2013

W-coated CFC

I Nunes 5 (20)

W-coated CFC divertor tiles

- Surface temperature limit: 1200°C
- Energy limit: 250 MJ / row

Bulk W divertor

- Surface temperature limit: 1000°C
- Heat flux factor: 35 MJm⁻²s^{-1/2}
- Energy limit: 60 MJm⁻² or stack

Scenario choices and strategies

4MA H-mode \rightarrow ~500-700 tones + ~20MJ of energy Margin of a factor of 2 against serious damage to the vessel

Scenario optimised for

- Minimum disruption force minimise PF currents
- Maximum I_p within currents coils constraints → low triangularity
- Maximise q_{95} for given $I_p/B_T \rightarrow$ large volume
- Avoid plasma-wall contact

Scenario choices and strategies

Special care

- I_P ramp-up \rightarrow low li to optimise volume
- I_P ramp-down (high li) balance between
 - fast I_p ramp-down \rightarrow reduce disruption force
 - Shrink plasma to avoid wall contact → increase PF → increase disruption forces
- Disruption avoidance
 - Early detection of off-normal events
- MGI if disruption unavoidable

> 2.5cm	*

I Nunes 7 (20)

○ EFJE

High-Z impurity accumulation

Most common cause of off-normal event → High-Z impurity accumulation (50% likely to disrupt)

- NBI switch-off
- ELM frequency decreases
- W concentration in core increases
- temperature profiles become hollow after sawteeth stop
- current profile becomes hollow and an n=1 mode grows until it triggers the MGI.
- ➔ Early detection of radiation peaking

choice of alarm level: too early vs. too late work in progress ...

I Nunes 8 (20)

Scenario choices/strategies

- integration into the scenario of:
 - Control of W core accumulation
 - Divertor heat load control
- Confinement

I Nunes 9 (20)

Summary and future prospects

○ EFJEA

2.5MA/2.35T

Gas puffing

- Increases ELM frequency to control W reaching the plasma core
- Stationary discharges although at reduced confinement

I Nunes 10 (20)

25th IAEA FEC , St. Petersburg, Russia 13th -18th October 2014

 ICRH heating → increases core electron temperature and maintain sawteeth activity → expel W from core
 E Lerche EX/P5-22

RF frequencies \iff B_T constraints (q₉₅=3)

H minority off-axis

 Effective if resonance inside q=1 surface

He3 minority on-axis

Similar results to H minority (off-axis, inside q=1 surface) at ~8% He³ concentration → small impact on performance

I Nunes 11 (20)

Scenario choices/strategies

- integration into the scenario of:
 - Control of W core accumulation
 - Divertor heat load control
- Confinement

I Nunes 12 (20)

Summary and future prospects

Divertor heat load control

JET has restrictive operation limits for bulk W and W coated CFC tiles -> pulse length at high power at high plasma current

Extrinsic impurities

- N2 not compatible with DT operation → Tritium plant at JET
- Ne: Small reduction of target surface temperature

Strike point sweeping at 4Hz

 4cm sweeping → strong reduction of surface target temperature

I Nunes 13 (20)

Divertor heat load control – Ne

- Range of D2/Ne narrow \rightarrow transitions to ELM-free followed by type III ELMs
- Small change P_{radDIV}/P_{rad,TOT} with Ne injection →observations of small reduction of target surface temperature
- Experiments at 3.5MA show no increase of P_{rad,div}

C Giroud Ex/P5-25

```
I Nunes 14 (20)
```


- Scenario choices/strategies
- integration into the scenario of:
 - Control of W core accumulation
 - Divertor heat load control

Confinement

I Nunes 15 (20)

Summary and future prospects

- Strike points close to pump throat
 - operate at lower pedestal density \rightarrow higher pedestal temperature
- As a consequence confinement improves (still need for gas puffing)

I Nunes 16 (20)

- Pedestal Similar pedestal pressure but higher pedestal temperature when strike points closer to pump throat
- Core higher density peaking due to lower collisionality → higher core pressure

E de la Luna EX/P5-29 E Joffrin EX/P5-40 C Maggi EX/3-3

○ EFJEA

- JET-C: both T_{e,ped} and n_{e,ped} increase with I_p
- Density similar to JET-C but T_{eped} , below ~1.2keV for I_p >2.5MA
- At similar I_p/B_T the pedestal pressure is considerable lower than that on CFC

 Hybrid scenario shows that with high P_{add} is possible to get higher T_{e,ped} → higher confinement

I Nunes 18 (20)

Confinement dependence on P_{IN}

• $H_{98(y,2)}$ is seen to strongly increase for $\beta_{N,th}$ above ~1.6 with a fast rise of the pedestal pressure, mainly due to the increase of the pedestal temperature

C Challis EX/9-3

 Achievement of good confinement at high I_p/B_T strongly dependent on power (and gas dosing)

- Optimised plasma termination and the detection of off-normal events
- Used gas dosing and ICRH to control W accumulation
- Optimised confinement by increasing pedestal temperature
- Achieved $H_{98(y,2)}$ ~1 at 2.5MA (like JET-C)
- Achieved stationary conditions up to 4MA/3.73T (P_{TOT}=27MW)

I Nunes 20 (20)

- Further optimisation is a primary goal for 2015/2016 campaigns
 - Higher available additional power 32MW NBI + ~10MW RF
 - Reduce gas dosing

I Nunes 21 (20)

- Explore other extrinsic impurities for divertor heat load control
- Minimise gas fuelling to improve confinement by introducing fuelling with pellets

