Fusion Research in loffe Institute

L.G.Askinazi

On behalf of FT-2, Globus-M, TUMAN-3M, Diagnostics and Theory Teams Ioffe Institute, St. Petersburg, Russia

Russian and International Collaborators

A.A. Baikov Institute of Metallurgy and Materials Science, RAS, Moscow, Russia

D.V. Efremov Institute of Electrophysical Apparatus, St. Petersburg, Russia Euratom-Tekes Association, Aalto University, Espoo, Finland

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS, Moscow, Russia

NRC "Kurchatov Institute", Moscow, Russia

Max-Planck Institute for Plasma Physics, Greifswald, Germany

loffe Fusion Technologies Ltd, St. Petersburg, Russia

IJL, Universite Henri Poincaré, Vandoeuvre, France

Institute of Plasmas and Nuclear Fusion, IST, Lisbon, Portugal

IPP NSC KIPT, Kharkov, Ukraine

Joint-Stock Company "INTEHMASH", St. Petersburg, Russia

KTH Royal Institute of Technology, Stokholm, Sweden

Saint Petersburg State Polytechnical University, St. Petersburg, Russia

- Fusion Research in Ioffe: Directions and Structure
- Tokamak Plasma Physics:
 - -LH Current drive (FT-2 and Globus-M)
 - –NBI, Fast particles and Alfven waves physics (Globus-M and TUMAN-3M) in support of Globus-M2 project
 - –GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M)
- Plasma Theory
- Diagnostics for ITER

Fusion research in loffe Institute is being conducted in two major fields:

- Basic high temperature plasma physics, both experimental and theoretical:
 - -Wave propagation in toroidal plasmas
 - Energetic ion physics
 - Plasma turbulence characterization and its interplay with confinement

Reactor oriented studies:

- Development of tokamak plasma diagnostics, including three contracts with ITER IO
- Research in support of neutron source based on spherical tokamak concept

Tokamak experiments

	Α	R, m	a, m	B _t , T	l _p , kA	Shaping	Limiter or Divertor	Auxiliary Heating and CD (MW)
Globus-M	1.5	0.36	0.24	0.4	250	b/a= 2.0 δ ≤ 0.5	divertor	NBI (1.0), ICRH (1.0), LHCD (0.5)
TUMAN-3M	2.4	0.53	0.22	1.0	190	circular	limiter	NBI (0.6)
FT-2	7	0.55	0.08	2.3	35	circular	limiter	LHCD, LHH (0.3)

Institute Tokamak Plasma Physics

Globus-M upgrade: Globus-M2 project

	Α	R, m	a, m	B _t , T	Ι _p , kA	Shaping	Limiter or Divertor	Auxiliary Heating and CD
Globus-M2	1.5	0.36	0.24	1.0	500	b/a= 2.0 δ ≤ 0.5	divertor	NBI (1.0), ICRH (1.0), LHCD (0.5)
								5/24

Institute **EXPERIMENTAL PROVIDENTS OF CONTRACT OF CONTRACT.**

- FT-2: High B_t=2.3 T and moderate density → traditional toroidal grill is used (f=920MHz)
 - LHCD efficiency η_{CD} ~0.4 $\cdot\,10^{19}AW^{\text{--}1}m^{\text{--}2}$
 - Mechanisms of LHCD offset at high density is studied (density limit)
 - LHCD density limit is just slightly higher in D than in H

 Most probable explanation – Parametric Decay Instability of pumping wave and peripheral absorption of daughter wave

EX/P1-29, S. Lashkul

Institute **Experiments:** Institute **FT-2 and Globus-M**

- **Globus-M**: Low $B_t=0.4T$ and high density \rightarrow high $N_{\parallel} > 7-10$ needed, but toroidal slowing down is inapplicable
- Alternative approach proposed and validated: LH waves (f=2.45GHz) with $N_{pol} \sim N_{||} \sim 3$ are launched in poloidal direction, gradually accumulate higher $N_{||}$ and are absorbed in a vicinity of poloidal resonance

- RF up to 30 kA (twice as high as predicted by modeling)
- LHCD efficiency $\eta_{CD}\,{\sim}0,25{\cdot}10^{19}AW^{{-}1}m^{{-}2}$

TH/P1-34, V. Dyachenko

Institute physics: Globus-M and TUMAN-3M

Neutron production in beam-plasma D-D reactions

Institute physics: Globus-M and TUMAN-3M

Neutron production in beam-plasma D-D reactions

9/24

Globus-M2 status

Globus-M Upgrade (Globus-M2 Project) is on the way: first plasma is awaited in 2016

OV/P-04, V. Gusev

FIP/P8-25, V. Minaev

"t-max" "B-max" Globus-M2 regime regime Plasma major / 0.36 / 0.24 m 0.36 / 0.24 m minor radius **Toroidal Field** 1.0 T 0.7 T Plasma Current 0.5 MA 0.5 MA 0.4 s 0.7 s TF flattop Inductive / CD Basic regime Inductive / CD TF field ripple < 0.4% < 0.4% at R = 0.6 m

- The manufacturing of a new magnetic system was successfully started
- Special conductors for the TF and PF magnets have been manufactured and delivered to the loffe Institute
- New power supplies is under development

Institute NBI, Fast Ions and Alfven waves physics: Globus-M and TUMAN-3M

 Fast lons confinement in Globus-M and TUMAN-3M: plausible effect of inward shift ∆R of plasma column

EX/P1-33, N. Bakharev

Ioffe NBI, Fast Ions and Alfven waves Institute physics: Globus-M and TUMAN-3M

 In Globus-M Alfven eigenmodes cause additional

EX/P1-33, N. Bakharev

 In TUMAN-3M Alfven eigenmodes observed in Ohmic regime without FI

 Poloidal inhomogeneity of turbulence measured for the first time in the FT-2 tokamak by Radial Correlation Doppler Reflectometry and calculated by full-f gyrokinetic code ELMFIRE (Aalto University, Espoo, Finland)

EX/P1-30, A. Altukhov

GAM studies: turbulence, GAM Institute and transport interplay (FT-2, Globus-M and TUMAN-3M)

Ioffe GAM studies: turbulence, GAM and Institute transport interplay (FT-2, Globus-M and TUMAN-3M)

- GAM radial profile was studied using Doppler reflectometry (DR) on Globus-M and TUMAN-3M in cooperation with SPbSTU
 - by shot-to-shot spatial scan with single tunable frequency on Globus-M
 - by two-frequency DR on TUMAN-3M
- In both cases, GAM location1-2cm inside LCFS is concluded, with approx. constant frequency throughout the localization region

On Globus-M, the evident correlation between the GAM oscillations of rotational velocity, D_α emission, peripheral plasma density and polidal magnetic field oscillations was observed
EX/P1-32, V. Bulanin

15/24

GAM studies: turbulence, GAM and transport interplay (FT-2, Globus-M and TUMAN-3M)

- It is seen from experiment and modeling on FT-2 that GAM modulates turbulence and anomalous transport
- In the TUMAN-3M, GAM observed with HIBP was found to precede LH transition $\frac{\partial n(r,t)}{\partial t} - \frac{1}{r} \frac{\partial}{\partial r} r \cdot \left(D(r,t) \cdot \frac{\partial n(r,t)}{\partial r} - v(r) \cdot n(r,t) \right) = S(r)$

Numerical modeling of density evolution in TUMAN-3M with E_r sheardependent diffusion shows that a GAM-like burst can be a trigger for the LH-transition, if GAM amplitude overcomes some threshold

 $E_r = E_{NEO} + E_{CAM}$

 $D(r,t) = K_{s}(\omega)D_{0}(r)$

 $K_{\rm s}(\omega) = 1/(1 + (\omega/\gamma)^2) + K_{\rm NEO}$

Expression for the beam width in the statistically homogeneous turbulence case

Plasma Theory: The low threshold parametric decay instabilities leading to anomalous absorption at ECRH in toroidal devices

Parametric excitation of the electron Bernstein wave (EBW) trapped in the drift-wave eddy Parametric excitation of two upper hybrid (UH) plasmons trapped in the magnetic island

The power threshold - about 50 kW

The phase portrait along the EBW ray trajectory

Able to explain fast ion tail production in TCV and TJ-II X-mode 2nd harmonic ECRH experiments

The power threshold is less than 100 kW

This decay is responsible for the anomalous backscattering observed in 2nd harmonic ECRH experiments at TEXTOR and ASDEX-UG

- Three diagnostic tools for ITER are being developed in loffe Institute
 - Neutral Particle Analysis (NPA) for measurement and control of fuel isotope composition of burning plasma
 - Gamma Spectroscopy (GS) intended to follow MeV-range ions born in nuclear reactions and to provide information on location of the runaway electron beams by measuring their bremsstrahlung radiation
 - Divertor Thomson Scattering (DTS) for detailed measurements of electron component parameters

Diagnostics for ITER: Institute Tandem of Neutral Particle Analyzers

china eu india japan korea russia usa

- Compact version of the Tandem (250 x 150 x 150 cm) has been developed
- Both analyzers can operate in parallel because observation line of LENPA is shifted to ensure independence
- Time resolution 0.1 s or better, accuracy 10%

TH/P3-37, V. NESENEVICH

Institute Camma-ray Spectrometry

Gamma-ray Spectrometer in the NPA system will support NPA measurements of:

- Fuel ratio n_T/n_D ,
- Ion temperature T_i
- Energy spectrum of confined alpha-particles

Vertical Gamma-Ray Spectrometers for H and He phases of ITER operation will be used for:

- Runaway electrons diagnostics
- Obtaining of fast-ion distribution functions
- ICRF heating optimization

Diagnostics for ITER: Divertor Thomson Scattering

- Resolution high enough to measure steep temperature and density gradients proved by simulation
- DTS can be used as a sensor for real time control of power flux to the divertor targets
- Approbation of equipment and technique: prototyping on Globus-M

MPT/P4-8, A. Razdobarin EX/P5-28, G. Kurskiev

Institute Institute: 3 Orals and 19 Posters

OV/1-1 L.A	SKINAZI	Fusion Research in loffe Institute
	-	
EX/11-2Ra A. G	GURCHENKO	The Isotope Effect in GAM – Turbulence Interplay and Anomalous Transport in Tokamak
TH/4-2 A. P	POPOV	The Low Threshold Parametric Decay Instabilities Leading to Anomalous Absorption at ECRH in Toroidal Devices
OV/P-04 V. G	GUSEV	Review of Globus-M Spherical Tokamak Results
EX/P1-33 N. I	BAKHAREV	Fast Particle Behavior in Globus-M
FIP/P8-25 V. N	MINAEV	Globus-M2 Design Peculiarities and Status of the Tokamak Upgrade
MPT/P8-15 A. N	NOVOKHATSKY	Testing of Mock-ups for a Full Tungsten Divertor on Globus-M Tokamak
TH/P1-35 I. SI	ENICHENKOV	Integrated Modeling of the Globus-M Tokamak Plasma
TH/P1-34 V. D	DYACHENKO	The First Lower Hybrid Current Drive Experiments in the Spherical Tokamak Globus-M
EX/P1-32 V. B	BULANIN	Geodesic Acoustic Mode Investigation in the Spherical Globus-M Tokamak
EX/P6-59 A. E	BELOKUROV	GAM Evolution and LH-Transition in the TUMAN-3M Tokamak
EX/P6-58 V. K	(ORNEV	Effect of Horizontal Displacement on Fast Ion Confinement in TUMAN-3M
EX/P6-57 M. \	VILDJUNAS	Alfven Oscillations in the TUMAN-3M Tokamak Ohmic Regime
EX/P1-29 S. L	ASHKUL	Impact of Isotopic Effect on Density Limit and LHCD Efficiency in the FT-2 Experiments
EX/P1-28 V. R	ROZHDESTVENSKY	Nonthermal Microwave Emission Features under the Plasma Ohmic Heating and Lower Hybrid Current Drive in the FT- 2 Tokamak
EX/P1-30 A. A	ALTUKHOV	Poloidal Inhomogeneity of Turbulence in the FT-2 Tokamak by Radial Correlation Doppler Reflectometry and Full-f Gyrokinetic Modeling
FIP/P4-4 D. C	GIN	Gamma-Ray Spectrometer in the ITER NPA System
MPT/P4-8 A. F	RAZDOBARIN	RF Discharge for In-Situ Mirror Surface Recovery in ITER
SEE/P5-8 E. N	MUKHIN	In-Situ Monitoring Hydrogen Isotope Retention in ITER First Wall
EX/P5-28 G. H	KURSKIEV	A Study of Core Thomson Scattering Measurements in ITER Using a Multi-Laser Approach
TH/P3-37 V. N	NESENEVICH	On the Possibility of Alpha-Particle Confinement Study in ITER by NPA Measurements of Knock-on Ion Tails
IFE/P6-16 M. S	SHMATOV	The Perspectives of the Use of the Advanced Fuels for Power Production

Highlights

Basic high temperature plasma physics, both experimental and theoretical:

- LHCD studies:
 - On FT-2, LHCD density limit was investigated and found to be governed by PDI
 - On Globus-M, LHCD scheme with poloidal slowing down was proposed and validated
- Fast particles physics:
 - Mechanisms responsible for fast ions losses were studied on Globus-M and TUMAN-3M in experiments with horizontal shift of plasma column
 - Alfven waves were shown to play a role in FI losses in Gobus-M
 - On TUMAN-3M, Alfven waves excitation was observed in OH regime
- Plasma turbulence characterization and its interplay with confinement:
 - On FT-2, strong poloidal inhomogeneity of turbulence was observed for the first time both experimentally and in full-f gyrokinetic modeling
 - GAM radial localization in vicinity of LCFS was measured both on Globus-M and TUMAN-3M
 - On FT-2, turbulence level modulation at GAM frequency was observed for the first time; strong correlation between GAM, background turbulence level and electron thermal diffusivity was observed experimentally and in modeling
 - Numerical model showing GAM ability to trigger LH transition is proposed
- From Globus-M to Globus-M2:
 - Increase in toroidal field, plasma current, pulse duration will result in better performance
- Plasma theory:
 - Importance of microwave beam broadening in the edge turbulent plasma for ITER-like case was proved analytically and numerically

Role of low threshold PDI in anomalous absorption of EC waves in toroidal devices is cleared up
Development of three diagnostics for ITER

- Tandem NPA
- Divertor TS
- Gamma ray spectroscopy