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Fuel Retention and Erosion of Metallic
Plasma-Facing Materials under
the Influence of Plasma Impurities
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@ Plasma-wall interaction largely defines 4 ULICH
the availability of fusion reactor J

Crucial issues for reactor availability

s Erosion of plasma-facing components
= Limited lifetime of plasma-facing components

s Fuel retention in bulk wall material and deposited layers

= Accumulation of radioactive tritium in vacuum vessel
(amount of in-vessel retained tritium is limited in ITER
due to safety regulations to ~1kg)

First wall materials in ITER
% Beryllium for main chamber wall

% Tungsten for divertor and baffle

Impurities in reactor

< Helium from D-T reactions

s Impurity seeding for edge plasma cooling, argon is one of
the candidates

» Influence of impurities needs to be investigated
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This contribution: interaction of impurity 5 ULICH
@ containing plasma with beryllium and tungsten of Lhdmeds:

Beryllium
+ Erosion and fuel retention under influence of helium and argon

+ Qualification of aluminium as possible substitute for beryllium in relevant
studies

Tungsten
s Influence of the incident ion flux on fuel retention and surface morphology

+ Fuel retention under influence of helium and argon

Experimental studies were performed in linear plasma devices
PSI-2, PISCES-B and Magnum-PSI
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@ Linear plasma device PSI-2 (FZJ) JULICH
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Linear plasma devices

JULICH
PISCES-B and Magnum-PSI

FORSCHUNGSZENTRUM

PISCES-B (UCSD): compatible with beryllium
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[R. P. Doerner et al, Phys. Scr. T111 (2004) 75]
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Vacuum pumps

Magnum-PSI (FOM-DIFFER): (17500m3/h each

high particle and heat loads

"Magnetic coils
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Plasma exposure parameters
In linear plasma devices

Y

JULICH
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Parameter PSI-2 PISCES-B Magnum-PSI ITER divertor
Electron 1-40eV 3-50 eV 0.1-10eV ~1-10eV
temperature
El. density ~10Y7 - 10¥ m3 ~10Y7 - 10¥ m3 ~10%°-10% m= ~10%0- 10%t m3
: ~10%1 - 1072 ~10%1- 1023 ~1023- 10%° ~10%4- 10%
Particle flux m-2g1 m-2g1 m-2g1 m-2g1
~1026 - 27 -2
: up to ~102’ m-2 up to ~10%2’ m-2 up to ~102" m-2 10%-10%'m
Particle fluence per pulse
per exposure per exposure per exposure
(400 s)
Incident ion 10 - 300 eV 10 - 300 eV 1-300eV
) : ) : : . ~10 eV
energy (negative bias) (negative bias) (negative bias)
Wall (sample) 300 - 2000 K 300 - 2000 K 300 - 2000 K 500 - 1300 K
temperature
. Beryllium : :
Special features compatibility High particle flux

» Transients (ELMs, disruptions) can be simulated by laser or pulsed plasma irradiation
» Fluence per experiment is ~10x — 100x higher than in present pulsed tokamaks
» Exposure parameters can be pre-selected to simulate particular ITER conditions
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Erosion and fuel retention

of beryllium and aluminium
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Erosion of beryllium and aluminium ,‘

JULICH
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PISCES-B / PSI-2 exposure conditions

= Controlled Ar or He seeding 0-100%
(controlled by spectroscopy:
uncertainty in Ar fraction due to
presence of Ar?* and ArD*)

= Steady-state and reproducible plasma
= T ~ 102 m2s-

« ®~1.10% m2
* E, = 40-100 eV
« T, = 350430 K

Be (press-sintered Brush Wellman
S-65C) and Al targets

Diagnostics and sample analysis

» Erosion from target is measured by
spectroscopy and mass loss

PISCES-B data published in
A. Kreter et al, Phys. Scr. T159 (2014) 014039

PISCES target in plasma

Sample
holder
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Surface morphology of Be and Al 5 J0LICH
@ after exposure to D/Ar plasma of Ehdmibrdd:

Beryllium in PISCES-B

Ar fraction 100 %
" >

Aluminium in PSI-2
Fine-scale grass-like structure in pure D plasma

Gradual smoothing out of surface with increase of Ar fraction
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@ Surface morphology of Be and Al
after exposure to D/He plasma

Aluminium in PSI-2

0% 1%
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Beryllium in PISCES-B

in pure helium plasma
[R. Doerner et al., JNM 455 (2014) 1]

Helium does not suppress formation
of grass-like structure, unlike argon

Arkadi Kreter et al. “Metallic Plasma-Facing Materials under Influence of Impurities” FEC 2014, St. Petersburg, 15 October 2014 10




Measured and calculated sputtering yields
In deuterium-argon plasma

QJULICH
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Beryllium erosion by argon
studied in PISCES-B
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» Reduced erosion of Be and Al in pure D plasma due to rough grass-like surface
and dilution of subsurface layer by deuterium
» Admixture of Ar to D plasma recovers erosion to expected values
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@ Measured and calculated sputtering yields &5 ULICH
In deuterium-helium plasma J

Aluminium erosion by helium Influence of surface roughness
studied in PSI-2 on effective sputtering
0.03
5 escaping sputtered particles
T @ o
= 0.02 o
(@)]
k=
<
S 0.01 trapped
N sputtered
particles
Experiment
0 . . . .
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He ion fraction [%]
Pure D: Pure He:
Rough Al surface
AL rough grass-like structure

» Rough grass-like structures can
significantly reduce effective
sputtering yield
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» Discrepancy also for pure He
plasma — rough grass-like surface
still present
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Deuterium retention in Be and Al
under influence of argon and helium
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Deuterium retention in beryllium
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studied in PISCES-B

Be target
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Deuterium retention in aluminium

studied in PSI-2
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o Typical several-peak structure for beryllium incl. low-temperature supersaturation
peak

o Single broad peak for aluminium

% Different behaviour of retention Al and Be under influence of argon
Aluminium cannot be used as beryllium surrogate for fuel retention studies
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Deuterium retention in tungsten

as function of incident ion flux

Incident ion flux for this study:
Magnum-PSI ~ 5x10%2 m-2s-1
PSI-2 ~ 1x10%2m-2s-1

Incident ion fluence kept constant
by longer exposures in PSI-2!
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Blister formation in tungsten by deuterium irradiation at high 4 J0LICH
@ surface temperatures J

FORSCHUNGSZENTRUM

SEM images of tungsten exposed to

low flux in PSI-2 high flux in Magnum-PSI
(f) 9:10%! D*/m?s, 870 K

No blisters

At high flux, blistering occurred for T, > 800 K !

[L. Buzi et al., J. Nucl. Mater. 455 (2014) 316]
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@ Blistering and deuterium retention in tungsten &5 ULICH
exposed to different ion fluxes J

Deuterium retention for different ion fluxes
and sample temperatures
(total fluence kept constant!)

Domain of blister formation
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The presence of blisters correlates with the At low and moderate exposure
total amount of retained deuterium temperatures: higher retention for lower
flux

At high exposure temperatures: higher
retention for higher flux

[L. Buzi et al., J. Nucl. Mater. 455 (2014) 316]
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Deuterium retention in tungsten

under influence of helium and argon
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Deuterium retention in tungsten
under influence of helium and argon

Thermal desorption spectra (TDS) of tungsten exposed to mixed plasmas

JULICH
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Effect of helium:

T

= Total deuterium retention is reduced by a factor of 3

= Nano-size bubbles observed by TEM in depth up to
~10 nm

(62}
. 1

D + Ar

Effect of argon:
= Total deuterium retention slightly increased

= TDS spectra show different shapes
— Change in trapping sites due to material damage
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by argon
[M. Reinhart et al., PSI 2014 Kanazawa, submitted to JNM]
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@ Conclusions !)JULICH
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Beryllium

s Erosion of beryllium and aluminium exhibits similar features

» Pure D plasma: Fine-scale grass-like structures, reduced measured sputtering
yield than calculated (factor ~10)

» Addition of Ar: Grass-like structures are suppressed, sputtering increases to
calculated values

s Mechanisms of deuterium retention in aluminium are different than in beryllium

Tungsten
+ Relation of retention for low and high fluxes is temperature-dependent
+» Blistering occurred for high flux at surface temperatures of >800 K

* Helium significantly reduces deuterium retention in tungsten, while argon slightly
increases it
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@ Julich beyond TEXTOR: integral concept on &5 ULICH
plasma-material interaction in nuclear environment J

» Development and integrated characterization of thermo-mechanical and physical-
chemical properties of neutron irradiated and toxic plasma-facing materials under
high heat loads and plasma exposure

» Focus on material optimization for plasma-material interaction processes
(tritium retention, embrittlement, erosion)

JULE-PSI linear
plasma device

(in construction
for HML)

JUDITH 1 and JUDITH 2
HHF e-beam facilities

e-beam tests .
JUDITH1 &2 linear
laser irradiation || Plasma devices

N\

n-irradiation in material
test reactors

t
loa

PSI-2 linear plasma device
(operational outside HML)

Nuclear infrastructure
(Hot Material Labs)

available at FZJ
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