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HL-2A tokamak-present status

: ‘R:  1.65m

‘a: 0.40 m

B, 1.2~27T

* Configuration:

Limiter, LSN divertor

Iy 150 ~ 480 kA

‘n, 1.0~6.0x10"m?3

T, 1.5~ 5.0 keV

T: 0.5~ 2.8 keV

Heating: Diagnostics: over 30, e.g. CXRS, MSE, ECEI...

ECRH/ECCD: 5 MW Fuelling system (H,/D,):

Gas puffing (LFS, HFS, divertor)

(6 X 68 GHz/0.5MW/1s, 2 X 140 GHz/1W/1s) e
Pellet injection (LFS, HFS)

NBI (tangential): 3 MW SMBI /CJI (LFS, HFS)
LHCD: 2 MW  (4/3.7 GHz/500 KW/2 s) LFS: f=1~80 Hz, pulse duration > 0.5 ms —
gas pressure < 3 MPa — = e
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€ H-mode physics and pedestal dynamics
* Two types of LCO in the I-phase of L-I-H transition
* Role of MHD modes in triggering I-H transition
* Role of impurities in H-I transition

* Quasi-coherent mode before and between ELMs

€ MHD & energetic particle physics
« Shear Alfven wave & nonlinear interaction with TMs
 Transitions among low-frequency MHD modes
» Energetic particle loss induced by MHD instabilities
* Interaction b/w NTMs & non-local transport

¢ ELM mitigation
€ Impurity transport

€ Summary & outlook
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Two types of LCO during L-I-H
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® Two types of LCO (type-Y and type-J) observea auring L-I-H
® Type-Y: turbulence leads E, Type-J: E, leads turbulence
® VPis the key, and jumps before I-H

J. Cheng, PRL 2013; J. Dong, FEC 2014, EX/11-3; Y. Xu, EPS 201
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Possible interpretation of different LCOs

Turbulence
(prey)

Type-J

e e Y. Xu, EPS 2014
(predator)
ﬁ U For the change of type-Y to type-J,

It seems that VP must be large enough !
E, oscillation — —
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Outward propagation w/ MHD crash

After the mode crash, plasma profile becomes flat: = Edge VP increases ! = E xB
shear flow increases = suppress turbulence = H-mode
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Radial outward propgagation of
thermal flux observed in ECE signals
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€ H-mode physics and pedestal dynamics
v Two types of LCO in the I-phase of L-I-H transition
v Role of MHD modes in triggering |I-H transition
» Role of impurities in H-I transition
» Quasi-coherent mode before and between ELMs

¢ MHD & energetic particle physics
» Shear Alfven wave & nonlinear interaction with TMs
* Transitions among low-frequency MHD modes
» Energetic particle physics loss by MHD instabilities
* Interaction b/w NTMs & non-local transport

¢ ELM mitigation

€ Impurity transport
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Impurity induced H-I-H transitions
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uasi-coherent mode before and between ELMs

10X 10™ _#19593 HL-2A
LH > '
ol @ "ans'meohsm Pensity fluctuatlon'
: ELMunset—)'l
5 |
|
| |
4r I |
Lol . |
T 0001 ARIRERSOEANRRARANNS =]
(b) e S
.7- ......... F gy ......... -y
| : i !
Gl g ;,.'I.Pedesta'l dens. |_1;.y ....... : ..........
¥ gradlent o
|| ......................................... s o]
1 T T T !
© i fam T
............................... |'|,.HI,F ||
_ AL by T N o
s e
o5k e : .......... L m T Hi ......... EI—-... o -1: ...........
' - R B S B : | # I - *
1000 1010 1020 1030 1040 1050 1 10 100 B bbb Mo D My
(o) OF -i'-*‘-!r.. Mode |nten5|ty I;*ﬂ
1010 1020 1030 1040 1050
t (ms)

» Quasi-coherent modes observed during ELM-free period & b/w ELMs;

» Quasi-coherent mode: 50-100kHz; ky~0.43 cm-! (electron diamagnetic
direction ~8km/s), k~1 cm-! (inward) , n =7 (counter |, );

> Mode excitation relates to pedestal saturation. W. Zhong, FEC 2014, EX/P7- 23
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¢ H-mode physics and pedestal dynamics
v Two types of LCO in the I-phase of L-I-H transition
v Role of MHD modes in triggering |I-H transition
v Role of impurities in H-I transition

v Quasi-coherent mode before and between ELMs

¢ MHD & energetic particle physics
» Shear Alfven wave & nonlinear interaction with TMs
» Transitions among low-frequency MHD modes
» Energetic particle loss induced by MHD instabilities

* Interaction b/w NTMs & non-local transport

¢ ELM mitigation
€ Impurity transport

¢ Summary & out
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eneration of n=0 mode by coupling
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> Axis-symmetric n=0 MHD mode
was observed in the presence
strong AEs & TMs;

» Nonlinearly generated via
i) BAE & TM coupling = EGAM
ii) TAE & TM coupling

» Could be one of the
mechanisms for energy cascade
in EP driven turbulence.

Auto-bicoherence & summed auto-
bicoherence of Mirnov signals,
indicating nonlinear interaction
among low-frequency fluctuations
and AEs.

W. Chen, FEC 2014, EX/P7-27




Up- and down sweeping RSAEs
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Typical discharges with the sweeping modes on Spectrogram of Mirnov signal for shot | (top)

HL-2A. The blue and red lines are and shot 11 (bottom)

W. Chen, NF, 2014

corresponding to shot | and shot I, respectively.

»Down-sweeping frequency MHD modes during |, ramp-up (NBI+ECRH); up-
sweeping frequency MHD modes before sawiooth crash during |, plateau and NBI.

> Both propagate poloidally in ion diamagnetic drift direction cmd toroidally co-
current direction in the lab frame, with n=2-5, and m=n.

> By kinetic Alfven eigenmode simulation, down-sweeping identified to be KRSAE,

and up-sweeping is RSAE in ideal or kinetic MHD limit. u:-
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Transitions b/w fishbone & LLM
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O Transition from LLM to fishbone and backward transition from fishbone to LLM were
observed during NBI heating;

O f ,, is higher than toroidal rotation frequency, but close to the precessional frequency of
trapped energetic ions generated by NBI.

O This observed LLM is energetic particle mode or saturated fishbone excited by the
trapped energetic ions.

L. Yu, FEC 2014, EX/P7-25
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¢ H-mode physics and pedestal dynamics
v Two types of LCO in the I-phase of L-I-H transition
v Role of MHD modes in triggering |I-H transition
v Role of impurities in H-I transition

v Quasi-coherent mode before and between ELMs

¢ MHD & energetic particle physics
v Shear Alfven wave & nonlinear interaction with TMs
v Transitions among low-frequency MHD modes

» Energetic particle loss induced by MHD instabilities
» Interaction b/w NTMs & non-local transport

¢ ELM mitigation
€ Impurity transport

4 Summary & outlook
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Observation of fast ion loss by SLIP

HL-2A: 22614
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@ Fast-ion loss induced by MHD instabilities measured by a fast-ion loss probe (SLIP).

€ Compared with long-lived mode (LLM), the spot induced by sawtooth crash has a
broad range in energy and pitch.

@ Interactions between MHD instabilities and energetic ions causes the fast-ion losses
with the wide range of energy and pitch angle.

Y. Zhang, FEC 2014, EX/P7-24 & RSI 2014
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NTM onset during non-local transport
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¢ NTMs drlven by the transient perturbation of local T, induced by
non-local transport.
— The NTM is located at the inversion surface of non-locality.

— The NTM onset is related to largest VT, around the reversion surface.

X. Ji, FEC 2014, EX/6-4
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Avalanche characteristics for non-locality
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¢ Enhanced-avalanche characteristics during non-local transport

0.0

time lag (ms)

0.5

— During non-locality, larger decorrelate time lag and Hurst parameters

X. Ji, FEC 2014, EX/6-4

— Longer range of inward and outward radial heat flux propagation
— Long radial propagation broken near the q=3/2 surface (NTM)

SwWIipP 17
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¢ H-mode physics and pedestal dynamics
v Two types of LCO in the I-phase of L-I-H transition
v Role of MHD modes in triggering |I-H transition
v Role of impurities in H-l transition

v Quasi-coherent mode before and between ELMs

¢ MHD & energetic particle physics
v Shear Alfven wave & nonlinear interaction with TMs
v Transitions among low-frequency MHD modes

v Energetic particle loss induced by MHD instabilities

v Interaction b/w NTMs & non-local transport

¢ ELM mitigation
€ Impurity transport
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I. & V/; decrease associated with ELM mitigation
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significant amount of SMBI injection. NO
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Impurity transport studies in SOL

Vertical profile of CIV and _ B Cui, FEC 2014,_EX/P7—26
Clll measured in HL-2A Impurity profile changes for different source locations
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3D modeling suggests that both poloidal asymmetry of impurity flow profile and an enhanced
physical sputtering play important role in impurity distribution and its screening efficiency in SOL
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¢ H-mode physics and pedestal dynamics
v Two types of LCO in the I-phase of L-I-H transition
v Role of MHD modes in triggering |I-H transition
v Role of impurities in H-l transition

v Quasi-coherent mode before and between ELMs

¢ MHD & energetic particle physics
v Shear Alfven wave & nonlinear interaction with TMs
v Transitions among low-frequency MHD modes
v Energetic particle loss induced by MHD instabilities

v Interaction b/w NTMs & non-local transport
¢ ELM mitigation
€ Impurity transport

¢ Summ outlook_
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Summary

¢ H-mode physics and pedestal dynamics
® Two types of LCO, type-Y & type-J observed, VP is the key for LCO transition.
® MHD mode crash = edge VP increases = triggering I-H transition

® LCOs lead to particle loss, reduce grad_n & impurity, impurity induced I-H-I
transition

® Quasi-coherent mode relates to pedestal saturation.

€ MHD & energetic particle physics
® BAEs and TAEs can interact with TMs and generate n=0 axi-symmetric mode;
® Up- and down sweeping RSAEs were identified.
® Transitions between fishbone and LLM observed.
® Energetic particle loss by MHD was measured by SLIP.
® SMBI induced non-locality can be explained by avalanche, and NTM at gq=3/2
breaks non-local transport
¢ ELM mitigation & impurity transport
®T, & V;reduction associated by ELM mitigation was measured
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Outlook

¢ HL-2A
« Heating upgrade: 2MW LHCD, 5MW ECRH, 3MW NBI,
» Diagnostics development: ECEIl, MSE, BES, GPI, DBS, CXRS ...
» Transport: H-mode physics, impurity transport, momentum transport
 MHD instability (RWM, NTM), NTM & saw tooth control by ECRH,;

» 3D effects: on ELM control, plasma flow, ZF and turbulence, L-H transition
threshold, plasma displacement;

» Energetic particles: EP driven mode identification, EP loss and control of EP
induced instabilities

€ HL-2M (upgrade of HL-2A)

« Parameters: R=1.78m, a=0.65m, Bt=2.2T, Ip=2.5MA, Heating~ 25MW,
triangularity=0.5, elongation=1.8-2.0

» Mission: advanced divertor (snowflake, tripod), PWI at high heat flux, high
performance, high beta, and high bootstrap current plasma

» Commission planned end of 2015

sw. P Southwestern Institute of Physics



HL-2A Contributions to this conference

Dong, J. EX/11-3 Sat. 11:30 AM

Ji, X. EX/6-4
Zhong, W. EX/P7-23
Yu, L. EX/P7-25

Cheng, J. EX/P7-32
Chen, W. EX/P7-27

Cui, 1. EX/P-26
Zhang, Y. EX/P7-24
Liv, Y. EX/P7-18

Dong, Y. EX/P7-31

Thu. 3:20 PM
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Xu, Yuan
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Zheng, G.
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Thanks for your attention!




Backup: Why is EGAM?

Low density Ohmic heating

-100

Internal fluctuations of

Spec. of DBS signal

f=17GHz, O-mode EGAM observed by
* different diagnostic
» ; methods.
(1M R V._“,;;L.'ﬁ
B Spec. of DBS signal Density fluctuations of
f=23GHz, O-mode BAEs and EGAM

measured by Doppler
back scattering (DBS).
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y \a
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& Spec. of DBS signal
f=48GHz, X-mode

Experimental results
indicate the EGAM
structure is global and
frequencies are constant
(eigenmode) in the
radial direction.
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Backup: Why is EGAM?
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Iti-transition between I-phase and H-mode
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€ LCOs cause considerable particle loss and reduce the pedestal gradient and the impurity density.
€ The radiation power is increasing during the H-mode phase .

4 Impurity density and radiation power continually increases for around 2 ms after the H-I fransition.
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Pedestal instabilities during Inter-ELMs

0.7

1 2103, ELMs. o) 'Mode intensity vs. pedestal gradient
Three ELMs 'during statistic ELM cycle
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£ | v The mode is also observed during inter-

: | ELMs by reflectometers.

: | v n =7 (counter current direction), kg ~ 0.43
" | em-(Electron diamagnetic direction)

v Mode excitation is related to the
saturation of the pedestal
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Simulation of RSAE by KAEC

Simulation for DS-RSAE Activities

The radial eigenfunction of a RSAE is obtained by a kinetic Alfvén eigenmode code (KAEC),
which is a non-perturbative kinetic MHD eigenvalue code. By solving the vorticity equation
using the finite element method, The KAEC can calculate the mode structures in general
tokamak geometry with finite pressure.
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€ The RSAEs are highly
localized near gmin.

€ The m=n poloidal
harmonic are dominant.
The mode frequency drops
as gmin decreasing.

@ If ignoring the FLR
effects, the modes do not
occur. So the RSAEs are
kinetic, but not ideal
instabilities.

€ n the same case, the
ideal MHD code, NOVA-K,
does not find the down-
sweeping modes.




Impact of NTM on non-local transport

No: 19453 Lo No:19906 With NTM durlng non- Iocallty
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1
4 The damping effect of NTM on non-local transport 0.3f
#Reduction of avalanche features with NTM in non-locality = 0.6}
— With NTM, lower intensity of avalanches <ol
— H parameter much smaller than without NTM in plasma core
— Long radial propagation clearly broken near the q=3/2 surface (NTM) 0.2
~0. 5

sw. P Southwestern Institute of Physics



