25th IAEA FEC, St. Petersburg, Russia, Oct., 2014

FLR and rotation effects on low-n MHD modes at the QH-mode discharges with a flat q spot

Linjin Zheng, M. T. Kotschenreuther, P. Valanju

INSTITUTE FOR FUSION STUDIES

THE UNIVERSITY OF FEDDEXAS AT AUSTIN

Outline

I. Motivations:

- Experimental observations of edge harmonic oscillation (EHO)/ outer modes (OMs)
- The differences between ELMs and EHO
- Infernal (or low magnetic shear) modes vs EHO

II. Equilibrium with bootstrap current

- **III. Edge instabilities with FLR**
- **IV. Summary**

Outline

I. Motivations:

- Experimental observations of edge harmonic oscillation (EHO)/ outer modes (OMs)
- The differences between ELMs and EHO
- Infernal (or low magnetic shear) modes vs EHO
- II. Equilibrium with bootstrap current
- **III. Edge instabilities with FLR**
- **IV. Summary**

Observation of EHOs at DIII-3D

Observation of OMs (EHOs) at JET

E.R. Solano, IAEA FEC, 2010

Existing peeling ballooning theory

Snyder et al. Nucl. Fusion 44 (2004) 320

EHO/OMs are not peeling ballooning modes

Experimental observations:

- 1. Modes resonate at the pedestal top
- 2. Mode frequencies are n-multiple of rotation frequency at pedestal top

Peeling mode has resonance in the vacuum region and therefore does not fit the frequency of experimentally observed modes.

Peeling-off modes

Extended Rutherford equation:

$$\Delta' = \frac{2\sqrt{2}\mu_0}{\eta} \frac{\partial x_T}{\partial t} A_0 - \frac{2\sqrt{2}}{x_T} A_c,$$

There is current jump at plasma edge: Peeling modes => peeling-off modes (Zheng & Furukawa, PoP)

does not peel off plasma, only tearing mode does

ELM physics: positive feedback process between ELMs and SOL current

Physics:

Edge MHD instability Radial transport to SOL SOL current surge Enhanced edge MHD instability

Formulation:

$$\begin{aligned} & au_w rac{\partial \delta B_r}{\partial t} - \Delta' \delta B_r = i \mu_0 w k_\theta \delta J_{||} \\ & ext{ with } \delta J_{||} ext{ Related to } \delta B_r \\ & ext{ by transport process } \end{aligned}$$

L.J. Zheng et al, PRL (2008)

Outline

I. Motivations:

- Experimental observations of edge harmonic oscillation (EHO)/ outer modes (OMs)
- The differences between ELMs and EHO
- Infernal (or low magnetic shear) modes vs EHO

II. Equilibrium with bootstrap current

III. Edge instabilities with FLR

IV. Summary

Equilibrium: Reduced magnetic shear profile due to the bootstrap current

Equilibrium pressure and safety factor profiles computed by VMEC. Rotation and density have same profiles as pressure

Current and safety factor reconstruction

C.E. Kessel et al., Nucl. Fusion 47 (2007) 1274

There is a safety factor maximum q_{max} (or reduced magnetic shear) near plasma edge

Outline

I. Motivations:

- Experimental observations of edge harmonic oscillation (EHO)/ outer modes (OMs)
- The differences between ELMs and EHO
- Infernal (or low magnetic shear) modes vs EHO
- II. Equilibrium with bootstrap current

III. Edge instabilities with FLR

IV. Summary

Basic set of equations and the AEGIS code

• Basic set of equations:

$$-\rho_m \hat{\omega}^2 \boldsymbol{\xi} = \delta \mathbf{J} \times \mathbf{B} + \mathbf{J} \times \delta \mathbf{B} - \nabla \delta P,$$
$$\hat{\omega}^2 = (\omega + n\Omega)(\omega + n\Omega - \omega_{*i}),$$

• Generalized energy principle

where

$$\delta W = \delta W_{mhd} + \delta W_{flr}$$

$$\delta W = \frac{1}{2} \int d\tau \ \rho_m (\omega + n\Omega - \omega_{*i}/2)^2 |\boldsymbol{\xi}|^2,$$

$$\delta W_{mhd} = -\frac{1}{2} \int d\tau \ \boldsymbol{\xi}^* \cdot [\delta \mathbf{J} \times \mathbf{B} + \mathbf{J} \times \delta \mathbf{B} - \nabla \delta P],$$

$$\delta W_{flr} = \frac{1}{8} \int d\tau \ \rho_m \omega_{*i}^2 |\boldsymbol{\xi}|^2.$$

Oct., St. Petersburg

where

25th IAEA FEC (2014)

Diamagnetic frequency at pedestal

Diamagnetic drift frequency profile:
— Directly proportional to pressure gradient
— Inversely proportional to density

FLR stabilization and q-plateau

• FLR stabilization effects are much stronger when the q-plateau is closer to or lower than an integer

 This is because the infernal harmonic shifts to the edge, where the diamagnetic frequency is bigger.

Infernal mode eigenfunction

Rotation effects with FLR

- Without FLR, growthrate is insensitive to the rotation frequency
- With FLR, growthrate becomes sensitive to the rotation frequency in the marginally stable case, while is still not very sensitive for the deeply unstable case.

Without FLR

With FLR

Rotation direction effects

Co-rotation is more effective for stabilization

EHO-like frequency multiplying rule

- EHO-like frequency multiplying rule: $\omega = n\Omega$ is still preserved with FLR effects.
- FLR or diamagnetic drift effects are important for not very high n modes

Summary

FLR effects are investigated at the H-mode pedestal:

1. Bootstrap current leads q to reverse or to form a plateau at pedestal

2. Infernal modes have the edge harmonic oscillation (EHO) features:

— the mode frequency equals n multiple rotation frequency: $\omega = n \Omega$

— Peeling or kink modes are not easy to explain this frequency features of EHO/OMs.

3. The FLR effects can have big effects on the modes with mode number as low as $n \ge 3$.

4. Co-rotation with the ion diamagnetic drift velocity is much effective for stabilization.

Oct., St. Petersburg

References

- [1] Linjin Zheng, M. T. Kotschenreuther, P. Valanju, "Behavior of n = 1 magnetohydrodynamic modes of infernal type at highmode pedestal with plasma rotation", Phys. Plasmas 20, 012501 (2013).
- [2] Linjin Zheng, M. T. Kotschenreuther, P. Valanju, "Low-n magnetohydrodynamic edge instabilities in quiescent Hmode plasmas with a safety-factor plateau", Nucl. Fusion 53, 063009 (2013).
- [3] Linjin Zheng, M. T. Kotschenreuther, P. Valanju, "Diamagnetic drift effects on the low-n magnetohydrodynamic modes at the high mode pedestal with plasma rotation", Phys. Plasmas 21, 062502 (2014).