Simultaneous measurement of the ELMs at both high

 and low field sides and ELM dynamics in crash-free

ELMs at the high \& low field sides
period in KSTAR

Hyeon K. Park UNIST, Ulsan, Korea

at
25th IAEA FEC Conference
Oct. 12-18 2014,
St. Petersburg, Russian Federation

ELMs in 3D [low field side)

In collaboration with
W. Lee (UNIST), M.J. Choi, M. Kim, J.H. Lee, J.E. Lee, G.S. Yun (POSTECH), X.Q. Xu (LLNL), S.A. Sabbagh, Y.S. Park (Columbia U.) ,C.W. Domier, N.C. Luhmann, Jr. (UC Davis), S.G. Lee (NFRI), KSTAR Team

Outline

> KSTAR 2D/3D ECE Imaging and MIR system

- 2D validation of the physics in modeling \rightarrow predictive capability of MHD and transport physics modeling
$>$ Images of the ELMs in H-mode plasma
- Growth -> Saturation -> Crash
- Validate the measured ELMs with synthetic images
$>$ ELMs at High field side
Discrepancies with the current understanding
- ELM dynamics during the crash free period
- Underlying dynamics of suppression/mitigation of the ELMs?

2D Density fluctuation EX/P8-13, W. Lee

T_{e} fluctuation (k vs. ω)

$2 \mathrm{D} \mathrm{T}_{\mathrm{e}}$
fluctuation
(30-50 kHz)

Oct. 8, 2010
sin $23^{\text {rd }}$ FEC Daejeon Korea

Modified sawtooth

Cold bubble
Leads to disruption EX/P8-15, Choi

Characteristic frequencies of the electron cyclotron emission

Measurement with O-mode polarization is verified for Sawtooth crash
J. Lee_JINST_(2011)

Poloidal view of the KSTAR plasma

Dynamics of a single

 ELM in KSTAR H-mode plasmas
(1) Initial growth
$\delta T_{\mathrm{ECE}} /\left\langle T_{\mathrm{ECE}}\right\rangle$
(2) Saturation

G.S. Yun et al., PRL 107 (2011)

- Observed structure = a faithful representation of ELM filaments
- Phantom image outside the separatrix due to ECE downshift from inside (well known); masked by finite system noise and scattered emission
- We ignore ECE signals contaminated by the downshifts
M. Kim et al., NF 54 (2014)

Relationship between toroidal (n), poloidal

 (m) mode numbers \& pitch angle $(\alpha *)$

$$
n=\frac{2 \pi R^{*}}{\lambda_{\text {pol }}} \tan \left(a^{*}\right)
$$

J.H. Lee, RSI, 85 (2014) J.E. Lee, 9th APFA conference (2013)

Simultaneous measurement of the ELMs at both HFS and LFS (2013)

>Rotation direction - Asymmetries in toroidal and/or poloidal velocity
> Comparable mode strength at HFS and LFS - No shear flow damping at HFS ?

$B_{0}=2.15 \mathrm{~T}$	$W_{\text {tot }}=270 \mathrm{~kJ}$
$I_{P}=610 \mathrm{kA}$	$q_{95} \approx 6$
$n_{e, \text { avg }}=3 \times 10^{19} 1 / \mathrm{m}^{3}$	

> Refraction effect - the actual mode spacing in HFS should be larger than the observed one.

- In and out pressure asymmetry? unlikely
$>$ The structure of ELM filaments at the HFS is not consistent with the ballooning mode structure.

Correlation image for \#9379 $\mathrm{t}=6.839249-6.843688 \mathrm{~s}$ $15 \overbrace{}^{\text {(ref.ch. LD 9-2) }} n=\frac{2 \pi R^{*}}{\lambda_{p o l}} \tan \left(a^{*}\right)$ equilibrium fitting.

- The ECEI can provide a fairly accurate toroidal mode number (n) using 2-D image and

> ELM structure + strong shear flow in HFS edge -> streamer like role?

Time evolution of a single global ELM crash

Collapse of pedestals at both sides

Summary
> Findings from the HFS ELMs

- Mode number discrepancies - infout asymmetry in pressure profile or Ballooning representation incorrect??
- Large mode amplitude - high flow shear damping at the HFS??
- Rotation direction - asymmetries in toroidalpoloidal velocities + others (e.g., Pfirsch Schluter flow)??
- Crash proceeds first at LFS - Ballooning characteristics??
- ELM dynamics during the "suppression" period
- Change of the edge confinement \rightarrow less free energy \rightarrow higher n, higher frequency, smaller crashes (bunching and singles), persistent ELMs without crash and brief moment without ELMs :marginal free energy or intricate physics??
- Broad spectra of dB/dt signals during ELM suppression period is not from the high-n mode burst

