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Summary

Measurements of 4 nuclear fusion products provide
iImportant information about the effects of ion diffusion
on the separation of fusion fuel species

» Ratios of T3Hed to D3Hep reaction yields, and DDp to DTn
reaction yields quantitatively illustrate the fusion yield
anomaly in directly driven, exploding—pusher ICF
Implosions.

» In contrast to the case of acceleration driven isothermal
atmosphere during compression burn, shock driven ion
diffusions cause specie separation at shock flash.

» Barodiffusion and electrodiffusion are likely the dominant
effects.

» More detailed future work will focus on quantitative study
of each individual effect.

This is an ongoing experiment project
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Hot-spot ignition requires a core temperature >10
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Mainline ICF simulations are made with
average-ion hydrodynamic codes
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Hydro assumptions can break down during the
shock-convergence phase
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The effects of ion diffusion have
been proposed to cause separation
of fuel species, leading to this
imbalance




Observation of se
In an imploded

LILAC simulations by J. Delettrez
1. E+1E




Recent work by An
of ion diffusion in pla

\[ dinP|[ eE ) dinT
kaInPkakEkB—T k=

Classical diffusion coeffici k, = —a(l—a)Kl— m j(1+ ZZTej— AZT, —‘ f(a,Z,,Z,,m /m,T,IT)
- m, T T

Mass diffusivity flux l, =—pD

a1+zl +(1_0[)1+ Z,

ml m2
azl(1+zl)+(1_a)zl(1+22)
ml m2

Barodiffusion coefficie k, =all-a)z, -2,

Electrodiffusion coef

k AZ

1_ a
{ laz,m Im, +(1-a)Z,Jal+2Z,)+1-a)i+Z,)m /m,]
AZmKk, y+1

— +
m(L+ZJa+@+ra)m/m,] ¥

(2010)



Exploding pushers
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Key measurements:
DD and D3He yields
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While DD yields relative to the DT yield are lower
than expected, TT reaction yields are higher than
expected (assuming a constant density ratio f, /f
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Measurement of D3He
single diagnostic has
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This diagnostic will explore detailed effects of Current relative accuracy: + 20 ps
kinetic and multi-ion physics on fusion burn. Goal relative accuracy: + 10 ps




Penumbral imaging of the fusion burn was used
to infer burn profiles across the hydrodynamic
and Kinetic regimes
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Measured burn profile
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These results further demonstrate that ion diffusion is substantial in the long-A; impl«
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