

TH/3-3: Assessment of Scrape-off Layer Simulations with Drifts against L-mode Experiments in ASDEX Upgrade and JET

 L. Aho-Mantila¹, S. Potzel², M. Wischmeier², D. Coster², H.W. Müller², S. Marsen³, S. Müller², A. Meigs⁴, M. Stamp⁴,
 S. Brezinsek⁵, the ASDEX Upgrade Team and the JET Contributors

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK ¹VTT Technical Research Centre of Finland, Espoo, Finland ²Max-Planck-Institut für Plasmaphysik, Garching, Germany ³Max-Planck-Institut für Plasmaphysik, Greifswald, Germany ⁴CCFE, Culham Science Centre, Abingdon, UK ⁵Institut für Energie- und Klimaforschung - Plasmaphysik, FZ Jülich, Germany

- Introduction
- Influence of drifts on a density scan in ASDEX Upgrade
- Influence of drifts on a N-seeding scan in JET
- Underlying physics
- Conclusions

- Introduction
- Influence of drifts on a density scan in ASDEX Upgrade
- Influence of drifts on a N-seeding scan in JET
- Underlying physics
- Conclusions

Understanding and predicting divertor exhaust

In ITER and DEMO, divertor exhaust involves **power dissipation by impurities** and **detachment**

 \Rightarrow A possible bottleneck for reactors

Coupled plasma-neutral simulations required for predicting power and particle exhaust

⇒plasma fluid / Monte Carlo neutral code packages

The codes do not reproduce all present-day experimental observations, **predictions uncertain**

- \Rightarrow detachment
- \Rightarrow divertor asymmetries

Experimental studies suggest that divertor asymmetries are sensitive to cross-field drifts

e.g. R. Pitts et al, J. Nucl. Mat. 2005

Analytic assessments are not sufficient to verify this, because the ExB drifts are sensitive to **temperature and pressure gradients**

A. Chankin, J. Nucl. Mat. 1997

Activation of drift terms in SOL simulations is computationally challenging and not routinely done Drift effects modelled using SOLPS5.0

B2.5: 2D plasma fluid code Eirene: Monte Carlo neutrals code + multiple impurities

ExB and diamagnetic drifts, currents

 $q_{\mathrm{e},x}$

$$\begin{split} &\frac{3}{2}nT_{\rm e}\left(-\frac{b_z}{Bh_y}\frac{\partial\Phi}{\partial y}+b_xV_{\parallel}-b_xj_{\parallel}/en\right)\\ &+\frac{5}{2}nT_eb_z\left(-\frac{D}{T_{\rm e}+T_{\rm i}}\frac{b_z}{h_x}\left(\frac{\partial p}{n\partial x}-\frac{3}{2}\frac{\partial T_{\rm e}}{\partial x}\right)-D_{\rm AN}^n\frac{1}{h_xn}\frac{\partial n}{\partial x}\right.\\ &-0.71b_xj_{\parallel}T_{\rm e}/e-\kappa_{\rm e\parallel}\frac{b_x^2}{h_x}\frac{\partial T_e}{\partial x}-\kappa_{e\perp}b_z^2\frac{1}{h_x}\frac{\partial T_{\rm e}}{\partial x}\\ &+\frac{3}{2}\frac{T_{\rm e}}{eB}\frac{\nu_{ei}}{\omega_{ce}}\frac{b_z^2}{h_x}\frac{\partial n(T_{\rm e}+T_{\rm i})}{\partial x}-\frac{5}{2}nT_{\rm e}^2\frac{B_z}{e}\frac{\partial}{h_y\partial y}\left(\frac{1}{B^2}\right) \end{split}$$

Example grid for ASDEX Upgrade

IPΡ

Modelling is validated against L-mode discharges in ASDEX Upgrade and JET

Different divertor configurations

- Vertical targets (AUG)
- Horizontal outer target (JET)

Different divertor regimes

 D fuelling and N seeding

Validation of modelled power exhaust and drift effects:

- target
 measurements
- volume measurements

Outline

- Introduction
- Influence of drifts on a density scan in ASDEX Upgrade
- Influence of drifts on a N-seeding scan in JET
- Underlying physics
- Conclusions

Activation of drifts leads to an asymmetric rollover of the simulated ion fluxes

Two regimes considered in detail

1. Low density

• Strong drift effects in the inner divertor

2. High density

 Atomic physics important, weak drift effects at the target

Target measurements

Inner target measurements indicate detachment and do not confirm the high Γ_{||} ⇒ Either drifts or particle exhaust incorrectly modelled

Low density: volume measurements confirm the modelled drift effects

Volume measurements

X-point probe measurements confirm higher Γ_{||} in the inner divertor

High density: small discrepancies in the inner divertor

Target measurements Volume measurements n_e [1e20m⁻³] inner target SOLPS5.0 2.5 2 with drifts 1.5 SOLPS5.0 Ο **10**²⁴ without drifts 0.5 m⁻²s-1 Χ Spectroscopy 3 LOS index 0.5 0 -30 -20 -10 10 S-S_{sep} [cm] SOLPS5.0 with drifts SOLPS5.0 without drifts

X Langmuir probes

High density: strong discrepancies in outer divertor conditions with and without drifts

Target measurements

Volume measurements

The modelling overestimates the inner target peak ion flux by factors 2-3

The modelling underestimates the outer target peak ion flux by a factor of 6

Problematic regimes encountered when the measurements deviate from the simple 2-pt model

Points towards an important role of **plasma-neutral interaction and atomic processes**

- Radiation losses
- Momentum losses
- Volume recombination
- (or convection)
 - ⇒ Reasons for the discrepancies are unclear*
- \Rightarrow Not likely to be due to drifts

S. Potzel et al, Nucl. Fus. 2014

*M. Wischmeier et al, J. Nucl. Mat. 2011

- Introduction
- Influence of drifts on a density scan in ASDEX Upgrade
- Influence of drifts on a N-seeding scan in JET
- Underlying physics
- Conclusions

2 regimes considered in detail

1. No seeding

 Strong drift effects in the inner divertor, similar to AUG

2. N-seeding

 High-recycling conditions at low density

Target measurements

Attached inner divertor conditions confirmed by the measurements

No impurities: drift effects confirmed by volume measurements

Volume measurements

Target measurements

Drifts increase Γ_{tot} at both targets

The peak Γ_{\parallel} is still underestimated by a factor of 2

- Introduction
- Influence of drifts on a density scan in ASDEX Upgrade
- Influence of drifts on a N-seeding scan in JET
- Underlying physics
- Conclusions

Low density: asymmetries are caused by E_r and currents

1. Poloidal ExB drifts and currents in the SOL transport power from the inner divertor to the outer divertor

2. The **ExB drift in the PFR** transports particles from the outer divertor to the inner divertor

Diamagnetic drifts affect the level of divertor heat flux, but not the in-out asymmetry

See also: T. Rognlien et al, J. Nucl. Mat. 1997 V. Rozhansky et al, Nucl. Fus. 2012

Summary of ExB drift effects

Electron heat convection due to the thermoelectric current

- The thermoelectric current arises from the T_e asymmetry between the two targets and amplifies the asymmetry caused by the ExB drifts
- Increasing discharge density cools down the upstream SOL, which reduces T_e gradients and leads to smaller asymmetries

ExB drifts and currents can lead to divertor asymmetries in both ASDEX Upgrade and JET

Effects depend on the operational regime (SOL gradients)

Results support the on-going efforts to model drifts in JET (EDGE2D) and ITER (SOLPS-ITER)

Inclusion of drifts does not solve the existing problems in reproducing high-density and detached conditions

Points towards problems in plasma-neutral interaction and atomic processes
 Modelling other operational regimes (e.g. H-mode) is a separate issue

SOL and divertor diagnostics play a crucial role in identifying missing physics

Measurements in the divertor volume have enabled verifying the modelled asymmetries at low density due to drifts and currents

Still lacking T_e measurements in the divertor volume

Back-up slides

L. Aho-Mantila

Typical transport assumptions

SOLPS runs with different physics included

none: no currents or drifts activated
currents: only currents activated, no drifts
dia: diamagnetic drifts and currents activated
ExB: ExB drifts and currents activated
all: ExB + diamagnetic drifts and currents

L. Aho-Mantila et al, EPS 2014

Asymmetries in different conditions

- Field reversal reduces the heat flux asymmetry and can reverse the peak T_e asymmetry
- N-seeding reduces the asymmetries at the divertor entrance, but the radiation losses are still higher in the inner divertor
- Increased discharge density cools down the SOL and both divertors, which reduces the asymmetries

E_r and flows

- Simulations underestimate flows in forward field
- Better match in reversed field

