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25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Reliable, quantitative predictions of Energetic Particle 
(EP) dynamics are crucial for burning plasmas


•  EPs from Neutral Beam (NB) injection, alphas, RF 
tails drive instabilities, 

–  e.g. Alfvénic modes - AEs


•  With instabilities, ‘classical’ EP predictions (e.g. 
for NB heating, current drive) can fail


> Predictive tools are being developed, validated 
for integrated modeling of these effects in 
present and future devices (ITER, Fusion Nuclear 
Science Facility - FNSF)
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Outline


•  NSTX discharges with strong MHD are used to 
test and validate EP transport models


•  Modeling methods beyond ‘classical’ EP physics 
are developed to account for MHD effects


•  New model captures MHD modifications of EP 
phase space leading to Neutral Beam current 
redistribution
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Alfvénic modes (AEs) and kink-like modes  
degrade fast ion confinement, plasma performance


Super-alfvénic ions, 
high βfi: plethora of fast 
ion driven instabilities
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[Fredrickson, NF 2013]!


 
 
NSTX

Major radius 
  0.85 m

Aspect ratio 
  1.3

Plasma current 
~1 MA

Toroidal field 
<0.55 T

Pulse length 
<2 s

Neutral Beam sources:



 
PNBI ≤ 6 MW


 
Einjection ≤ 95 keV


 
1<vfast/vAlfvén<5


Global and Compressional AEs"

toroidal AEs!
reverse"
shear"
AEs" toroidal AEs"

measured"

simulated"
(classical)"

NSTX #139048!
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Transport code TRANSP includes NUBEAM module 
for classical fast ion physics


•  Additionally, ad-hoc diffusivity Dfi is used to 
mimic enhanced fast ion transport

–  Assumed uniform in radius, pitch, energy in this work


•  Metric to set Dfi: match neutron rate, Wmhd
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Dfi=0.0 m2/s!

Dfi=1.0 m2/s!

Dfi=2.0 m2/s!

Dfi=5.0 m2/s!

measured!
simulated with Dfi(t)!
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However: instabilities introduce fundamental 
constraints on particle dynamics
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 From Hamiltonian formulation – single resonance:



 ω=2πf, mode frequency       n, toroidal mode number


E, energy

Pζ∼mRvpar-Ψ, canonical angular



 
 momentum

µ∼vperp

2/(2B), magnetic moment

where 
Ψ : poloidal flux



R  : major radius


m : mass


ΔPζ	



ΔE	



~n/ω	
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However: instabilities introduce fundamental 
constraints on particle dynamics


9


 From Hamiltonian formulation – single resonance:



 ω=2πf, mode frequency       n, toroidal mode number


These effects are not accounted for by ad-hoc Dfi.

A new method is needed to include them in integrated modeling.


E, energy

Pζ∼mRvpar-Ψ, canonical angular



 
 momentum

µ∼vperp

2/(2B), magnetic moment

where 
Ψ : poloidal flux



R  : major radius


m : mass
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Pζ	



Constants of motion (E,Pζ,µ) are the natural 
variables to describe wave-particle interaction


10


R
. B

. W
hi

te
, T

he
or

y 
of

 to
ro

id
al

ly
 c

on
fin

ed
 p

la
sm

as
,!

Im
pe

ria
l C

ol
le

ge
 P

re
ss

 (2
01

4)
!

Effects of multiple TAE modes!

µ
 B

0/E
	





25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Pζ	



Particle-following codes are used to extract 
distribution of ‘kicks’ ΔE, ΔPζ for each bin (E,Pζ,µ)


11


Effects of multiple TAE modes!

- ORBIT code: record E,Pζ,µ 
vs. time for each particle


- Compute average kicks over 
multiple wave periods:"
" ""

- Re-bin for each (E,Pζ,µ) region !

[Podestà, PPCF 2014]!

neglected! relevant time scale! classical!

1/fwave < τresonance < τcollisions!

ΔPζ1!

ΔPζ2!

ΔPζ3!

ΔPζN!

ΔE1!

ΔE2!
ΔE3!

ΔEN!
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µ
 B

0/E
	



New ‘kick model’ uses a probability distribution 
function for particle transport in (E,Pζ,µ) space
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Effects of multiple TAE modes!

Kicks ΔE,ΔPζ are described by


which includes the effects of 
multiple modes, resonances.

 
correlated random 

walk in E, Pζ	



[Podestà, PPCF 2014]!

ORBIT code modeling,!
random initialization!
of particles in phase-space!

Δ
P ζ

	



ΔE [keV/ms]	
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-  Example: toroidal AEs (TAEs) 
and low-frequency kink"

-  p(ΔE,ΔPζ|Pζ,E,µ) from particle-
following code ORBIT"

-  Each type of mode has 
separate p(ΔE,ΔPζ), Amode(t)"

-  TAEs and kinks act on different 
portions of phase space"

-  Amplitude vs. time can differ, 
too"

-  Effects on EPs differ"
> TAEs: large ΔE, ΔPζ	



> kinks: small ΔE, large ΔPζ!

p(ΔE,ΔPζ|Pζ,E,µ) and a time-dependent ‘mode amplitude 
scaling factor’ enable multi-mode simulations 
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ΔErms" ΔErms"
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ΔErms" ΔErms"

inner wall! outer wall!
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-  Example: toroidal AEs (TAEs) 
and low-frequency kink"

-  p(ΔE,ΔPζ|Pζ,E,µ) from particle-
following code ORBIT"

-  Each type of mode has 
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ΔErms" ΔErms"
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Outline


•  NSTX discharges with strong MHD are used to 
test and validate EP transport models


•  Modeling methods beyond ‘classical’ EP physics 
are developed to account for MHD effects


•  New model captures MHD modifications of EP 
phase space leading to Neutral Beam current 
redistribution
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Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)
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TAE avalanche! n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!
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TAE avalanche! n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!
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nb
"

TAE avalanches cause an abrupt drop in fast ions  
and up to ~40% reduction in local NB-driven current density 
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•  Results from ‘kick model’

•  Fast ions redistributed 

outward, lose energy

–  Consistent with constraints from 

resonant interaction:


•  NB-driven current Jnb is also 
redistributed out


•  Jnb(r) modification largely 
unpredicted by ad-hoc Dfi in 
this case


n fi
 [a

.u
.]"

J n
b [

kA
/m

2 ]"

NB driven current!
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nb
"

TAE avalanches cause an abrupt drop in fast ions  
and up to ~40% reduction in local NB-driven current density 
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•  Results from ‘kick model’

•  Fast ions redistributed 

outward, lose energy

–  Consistent with constraints from 

resonant interaction:


•  NB-driven current Jnb is also 
redistributed out


•  Jnb(r) modification largely 
unpredicted by ad-hoc Dfi in 
this case


n fi
 [a

.u
.]"

J n
b [

kA
/m

2 ]"

NB driven current!
ad-hoc Dfi!
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Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)
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n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!

TAE avalanche!
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Synergy between different classes of instabilities modifies 
MHD effects on Jnb(r) – not captured by ad-hoc Dfi
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•  Kinks have broad 
radial structure, 
connect core to 
boundary


> Synergy arises from 
mode overlap in 
phase space
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"

Phase-space is selectively modified by instabilities:  
TAEs ->                          , kinks -> mostly ΔPζ	
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TAEs only" kinks only" TAEs + kinks "
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Simulated neutron rate agrees with experiments  
for both TAE avalanches & multi-mode cases
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n=1!
n=2!

n=3!

n=2-6!

TAE 
avalanches!

+!
kink-like mode!

n=2-6!

TAE avalanches!

Use ʻkick modelʼ 
coupled to stand-alone 
NUBEAM!

TAEs"

kick model"
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Summary


•  NB-driven current profile can be strongly 
affected by MHD instabilities

–  Not all effects properly captured by classical EP physics


•  A new model is implemented in TRANSP for EP 
simulations including phase-space details

–  Validation within TRANSP framework is in progress


•  New tools will improve scenario development on 
NSTX Upgrade & future devices

–  NB current drive optimization

–  NB-driven current profile control for high-qmin steady 

state operations
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Backup slides
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‘Kick’ model exploits separation of typical time scales 
between instabilities and collisional processes


•  3 time scales characterize 
particle motion in the 
presence of instabilities:

–  1/fwave ~ 10’s µs

–  τresonance > 10xτtransit > 100’s µs

–  τcollisions, τslowdown >>> 1 ms


•  Relevant time scale for secular 
ΔE,ΔPζ by waves is τresonance


•  Classical mechanisms already 
included in IM codes (TRANSP)
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1/fwave !

τresonance!

τcollisions, τslowdown !

–  E.g. collisions, slowing down, atomic physics
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Reduced models offer advantages for Integrated Modeling 
(IM), plasma control over first-principles codes


•  First-principles codes not (yet) suitable for 
extensive ‘scans’ with multiple shots, long time-
scale simulations

–  Inclusion in real-time control schemes also unpractical


•  IM codes (e.g. TRANSP) have accurate treatment 
of atomic physics, ‘classical’ mechanisms

–  Reduced models for EP transport are good complement


•  IM codes have much broader scope than just EP 
physics

–  Physics-based reduced models improve accuracy of 

simulations, retaining ‘generality’ of IM codes
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Summary comparison of some reduced models  
used for EP transport
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ad-hoc Dfi
 CGM model (*)
 kick' model

physics-based
 no
 yes
 yes


required input
 Dfi(ρ,t)
 growth/damping 
rates


probability, 
mode amplitude


applicability


multi-mode

indirectly
 multiple AEs


AEs, kinks, 
NTMs. 

Fishbones/EPMs?

steady-state
 yes
 yes
 yes

transients
 yes
 only for τ>τrelax
 yes


phase-space selectivity
 modest
 no
 yes


predictive runs


requires

guess Dfi


requires mode 
spectrum: 

growth/damping


requires mode 
spectrum, 
amplitude


improvements

 none planned
 extend to 2D in 

velocity space

remove µ 

conservation


(*) CGM – Critical Gradient Model"
" see Gorelenkov TH/P1-2, Heidbrink EX/10-1"
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Simulations with ad-hoc Dfi show similar fast ion 
drops, but largely underestimate Jnb(r) modification 
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•  Uniform Dfi 
acts in the 
same way on 
all particles 
at all radii


•  No 
constraints 
from wave-
particle 
interaction


nb
"

n fi
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Scaling factor Amode(t) is obtained from measurements, or 
from other observables such as neutron rate + modeling
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Example:"
use measured neutron rate"

- Compute ideal modes through NOVA"
- Rescale relative amplitudes from 

NOVA according to reflectometers"
- Rescale total amplitude based on 

computed neutron drop from ORBIT"
- Scan mode amplitude w.r.t. 

experimental one, Amode=1: get table"
- Build Amode(t) from neutrons vs. time, 

table look-up"

- If no mode data directly available, Amode can be estimated 
based on other measured quantities"

ORBIT,!
constant Amode!

interpolation!

NSTX #139048, t~270ms"
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NSTX, TAE avalanche!

Mode amplitude can evolve on time-scales shorter 
than typical TRANSP/NUBEAM steps of ~5-10 ms
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Fnb evolution must be 
computed as a sequence of 
sub-steps


– Duration δtstep sufficiently shorter 
than time-scale of mode evolution


–  Examples here have δtstep~25-50 µs


Energy and Pζ steps 
assumed to scale linearly 
with mode amplitude


– Roughly consistent with ORBIT 
simulations 
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Each type of mode is characterized by its own 
amplitude vs time (e.g. from experiments)
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For each type of mode, energy and Pζ steps assumed 
to scale linearly with mode amplitude


–  Consistent with ORBIT simulations 
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Scheme to advance fast ion variables according to 
transport probability in NUBEAM module of TRANSP
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NUBEAM step k! NUBEAM step k+1!

read Plasma"
State, Fnb info"

convert Fnb(E,p,R,Z)"
to Fnb(E,Pζ,µ)"

read Amode,"
p(ΔE,ΔPζ|E,Pζ,µ)"

convert Fnb(E,Pζ,µ)"
to Fnb(E,p,R,Z)"

add “kicks” to Fnb variables!

sample"
ΔEj,ΔPζ,j"

evolve"
Ej,Pζ,j"

loop – MC mini-steps!

loop – Fnb particles!

diagnostics"
(e.g. classify"

orbit)"

re-compute sources, 
scattering, slowing down,"

E,Pζ “kicks”"
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Spherical torus NSTX is well suited 
for NB physics studies, model validation
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NSTX
 
 
NSTX-U

Major radius 
0.85 m 
 
0.9 m

Aspect ratio 
1.3 
 
 
1.5

Plasma current 
~1 MA 
 
<2 MA

Toroidal field 
<0.55 T 
 
<1 T 

Pulse length 
<2 s 
 
 
<5 s

Neutral Beam sources:
 




 
PNBI ≤ 6 MW 
 
≤ 12 MW


 
Einjection ≤ 95 keV
 
≤ 95 keV


 
 



New NBI set on NSTX-U will enable!
more flexible NB current drive!

1st NB line! 2nd NB line (upgrade)![Menard, NF 2012]!
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Predicted NSTX-U scenario with strongly peaked fast ion 
pressure has unstable TAEs
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-  Fast ion pressure 
is >2 times larger 
than in reference 
NSTX discharge"

- NOVA-K finds 
spectrum of 
(linearly!) unstable 
TAEs with n=3-6"

-  Predicted mode 
structure is 
narrower on 
NSTX-U than for 
typical NSTX !
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‘Kick’ and ad-hoc Dfi models predict comparable 
reduction of total Jnb - but profiles are very different
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- Reduction in total 
Jnb is modest, <20%"

-  Local Jnb(r) changes 
are much larger"

-  ʻKick modelʼ 
predicts localized 
reduction of Jnb(r) 
because of narrow 
mode structures"

- Non-linear physics 
may result in 
broader modes, 
though!

broader mode!
structures from!
NSTX #139048!


