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25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Reliable, quantitative predictions of Energetic Particle 
(EP) dynamics are crucial for burning plasmas

•  EPs from Neutral Beam (NB) injection, alphas, RF 
tails drive instabilities, 
–  e.g. Alfvénic modes - AEs

•  With instabilities, ‘classical’ EP predictions (e.g. 
for NB heating, current drive) can fail

> Predictive tools are being developed, validated 
for integrated modeling of these effects in 
present and future devices (ITER, Fusion Nuclear 
Science Facility - FNSF)
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Outline

•  NSTX discharges with strong MHD are used to 
test and validate EP transport models

•  Modeling methods beyond ‘classical’ EP physics 
are developed to account for MHD effects

•  New model captures MHD modifications of EP 
phase space leading to Neutral Beam current 
redistribution
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Alfvénic modes (AEs) and kink-like modes  
degrade fast ion confinement, plasma performance

Super-alfvénic ions, 
high βfi: plethora of fast 
ion driven instabilities
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[Fredrickson, NF 2013]!

  NSTX
Major radius   0.85 m
Aspect ratio   1.3
Plasma current ~1 MA
Toroidal field <0.55 T
Pulse length <2 s
Neutral Beam sources:

 PNBI ≤ 6 MW
 Einjection ≤ 95 keV
 1<vfast/vAlfvén<5

Global and Compressional AEs"

toroidal AEs!
reverse"
shear"
AEs" toroidal AEs"

measured"

simulated"
(classical)"

NSTX #139048!
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Transport code TRANSP includes NUBEAM module 
for classical fast ion physics

•  Additionally, ad-hoc diffusivity Dfi is used to 
mimic enhanced fast ion transport
–  Assumed uniform in radius, pitch, energy in this work

•  Metric to set Dfi: match neutron rate, Wmhd
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Dfi=0.0 m2/s!

Dfi=1.0 m2/s!

Dfi=2.0 m2/s!

Dfi=5.0 m2/s!

measured!
simulated with Dfi(t)!
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However: instabilities introduce fundamental 
constraints on particle dynamics
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 From Hamiltonian formulation – single resonance:

 ω=2πf, mode frequency       n, toroidal mode number

E, energy
Pζ∼mRvpar-Ψ, canonical angular

  momentum
µ∼vperp

2/(2B), magnetic moment
where Ψ : poloidal flux

R  : major radius
m : mass

ΔPζ	


ΔE	


~n/ω	
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constraints on particle dynamics
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 From Hamiltonian formulation – single resonance:

 ω=2πf, mode frequency       n, toroidal mode number

These effects are not accounted for by ad-hoc Dfi.
A new method is needed to include them in integrated modeling.

E, energy
Pζ∼mRvpar-Ψ, canonical angular

  momentum
µ∼vperp

2/(2B), magnetic moment
where Ψ : poloidal flux

R  : major radius
m : mass
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Pζ	


Constants of motion (E,Pζ,µ) are the natural 
variables to describe wave-particle interaction
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Pζ	


Particle-following codes are used to extract 
distribution of ‘kicks’ ΔE, ΔPζ for each bin (E,Pζ,µ)
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Effects of multiple TAE modes!

- ORBIT code: record E,Pζ,µ 
vs. time for each particle

- Compute average kicks over 
multiple wave periods:"
" ""

- Re-bin for each (E,Pζ,µ) region !

[Podestà, PPCF 2014]!

neglected! relevant time scale! classical!

1/fwave < τresonance < τcollisions!

ΔPζ1!

ΔPζ2!

ΔPζ3!

ΔPζN!

ΔE1!

ΔE2!
ΔE3!

ΔEN!
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µ
 B

0/E
	


New ‘kick model’ uses a probability distribution 
function for particle transport in (E,Pζ,µ) space
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Effects of multiple TAE modes!

Kicks ΔE,ΔPζ are described by

which includes the effects of 
multiple modes, resonances.
 correlated random 

walk in E, Pζ	


[Podestà, PPCF 2014]!

ORBIT code modeling,!
random initialization!
of particles in phase-space!

Δ
P ζ

	


ΔE [keV/ms]	
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-  Example: toroidal AEs (TAEs) 
and low-frequency kink"

-  p(ΔE,ΔPζ|Pζ,E,µ) from particle-
following code ORBIT"

-  Each type of mode has 
separate p(ΔE,ΔPζ), Amode(t)"

-  TAEs and kinks act on different 
portions of phase space"

-  Amplitude vs. time can differ, 
too"

-  Effects on EPs differ"
> TAEs: large ΔE, ΔPζ	


> kinks: small ΔE, large ΔPζ!

p(ΔE,ΔPζ|Pζ,E,µ) and a time-dependent ‘mode amplitude 
scaling factor’ enable multi-mode simulations 
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ΔErms" ΔErms"
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ΔErms" ΔErms"

inner wall! outer wall!
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Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)
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TAE avalanche! n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!



25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Simulated neutron rate agrees with experiments  
for both TAE avalanches & multi-mode cases

26

n=1!
n=2!

n=3!

n=2-6!

TAE 
avalanches!

+!
kink-like mode!

n=2-6!

TAE avalanches!

Use ʻkick modelʼ 
coupled to stand-alone 
NUBEAM!

TAEs"

kick model"
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TAE avalanche! n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!
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nb
"

TAE avalanches cause an abrupt drop in fast ions  
and up to ~40% reduction in local NB-driven current density 
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•  Results from ‘kick model’
•  Fast ions redistributed 

outward, lose energy
–  Consistent with constraints from 

resonant interaction:

•  NB-driven current Jnb is also 
redistributed out

•  Jnb(r) modification largely 
unpredicted by ad-hoc Dfi in 
this case

n fi
 [a

.u
.]"

J n
b [

kA
/m

2 ]"

NB driven current!
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nb
"

TAE avalanches cause an abrupt drop in fast ions  
and up to ~40% reduction in local NB-driven current density 
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•  Results from ‘kick model’
•  Fast ions redistributed 

outward, lose energy
–  Consistent with constraints from 

resonant interaction:

•  NB-driven current Jnb is also 
redistributed out

•  Jnb(r) modification largely 
unpredicted by ad-hoc Dfi in 
this case

n fi
 [a

.u
.]"

J n
b [

kA
/m

2 ]"

NB driven current!
ad-hoc Dfi!



25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Two NSTX cases are analyzed in detail: TAE avalanche 
and avalanche + kink-like mode (multi-mode scenario)

22

n=1!

n=2!
n=3!

n=2-6! TAE avalanches!
+!

kink-like mode!

TAE avalanche!
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Synergy between different classes of instabilities modifies 
MHD effects on Jnb(r) – not captured by ad-hoc Dfi

23

•  Kinks have broad 
radial structure, 
connect core to 
boundary

> Synergy arises from 
mode overlap in 
phase space
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Phase-space is selectively modified by instabilities:  
TAEs ->                          , kinks -> mostly ΔPζ	
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TAEs only" kinks only" TAEs + kinks "
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Summary

•  NB-driven current profile can be strongly 
affected by MHD instabilities
–  Not all effects properly captured by classical EP physics

•  A new model is implemented in TRANSP for EP 
simulations including phase-space details
–  Validation within TRANSP framework is in progress

•  New tools will improve scenario development on 
NSTX Upgrade & future devices
–  NB current drive optimization
–  NB-driven current profile control for high-qmin steady 

state operations
27



25th IAEA-FEC – MHD effects on NB current drive,  M. Podestà  (Oct. 17th, 2014)!

Backup slides
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‘Kick’ model exploits separation of typical time scales 
between instabilities and collisional processes

•  3 time scales characterize 
particle motion in the 
presence of instabilities:
–  1/fwave ~ 10’s µs
–  τresonance > 10xτtransit > 100’s µs
–  τcollisions, τslowdown >>> 1 ms

•  Relevant time scale for secular 
ΔE,ΔPζ by waves is τresonance

•  Classical mechanisms already 
included in IM codes (TRANSP)

29

1/fwave !

τresonance!

τcollisions, τslowdown !

–  E.g. collisions, slowing down, atomic physics
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Summary comparison of some reduced models  
used for EP transport
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ad-hoc Dfi CGM model (*) kick' model
physics-based no yes yes

required input Dfi(ρ,t) growth/damping 
rates

probability, 
mode amplitude

applicability

multi-mode
indirectly multiple AEs

AEs, kinks, 
NTMs. 

Fishbones/EPMs?
steady-state yes yes yes
transients yes only for τ>τrelax yes

phase-space selectivity modest no yes

predictive runs

requires
guess Dfi

requires mode 
spectrum: 

growth/damping

requires mode 
spectrum, 
amplitude

improvements
 none planned extend to 2D in 

velocity space
remove µ 

conservation

(*) CGM – Critical Gradient Model"
" see Gorelenkov TH/P1-2, Heidbrink EX/10-1"
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Scaling factor Amode(t) is obtained from measurements, or 
from other observables such as neutron rate + modeling
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Example:"
use measured neutron rate"

- Compute ideal modes through NOVA"
- Rescale relative amplitudes from 

NOVA according to reflectometers"
- Rescale total amplitude based on 

computed neutron drop from ORBIT"
- Scan mode amplitude w.r.t. 

experimental one, Amode=1: get table"
- Build Amode(t) from neutrons vs. time, 

table look-up"

- If no mode data directly available, Amode can be estimated 
based on other measured quantities"

ORBIT,!
constant Amode!

interpolation!

NSTX #139048, t~270ms"
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Scheme to advance fast ion variables according to 
transport probability in NUBEAM module of TRANSP
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NUBEAM step k! NUBEAM step k+1!

read Plasma"
State, Fnb info"

convert Fnb(E,p,R,Z)"
to Fnb(E,Pζ,µ)"

read Amode,"
p(ΔE,ΔPζ|E,Pζ,µ)"

convert Fnb(E,Pζ,µ)"
to Fnb(E,p,R,Z)"

add “kicks” to Fnb variables!

sample"
ΔEj,ΔPζ,j"

evolve"
Ej,Pζ,j"

loop – MC mini-steps!

loop – Fnb particles!

diagnostics"
(e.g. classify"

orbit)"

re-compute sources, 
scattering, slowing down,"

E,Pζ “kicks”"


