

U.S. DEPARTMENT OF

ENERGY Science

Effects of MHD instabilities on Neutral Beam current drive

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNI Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois** U Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

M. Podestà, M. Gorelenkova, D. S. Darrow, E. D. Fredrickson, S. P. Gerhardt, <u>W. W. Heidbrink</u>, R. B. White and the NSTX-U Research Team

> 25th IAEA Fusion Energy Conference St Petersburg, Russian Federation 13-18 October, 2014

Supported by U.S. DoE under contract DE-AC02-09CH11466

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo IAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Reliable, quantitative predictions of Energetic Particle (EP) dynamics are crucial for burning plasmas

• EPs from Neutral Beam (NB) injection, alphas, RF tails drive instabilities,

- e.g. Alfvénic modes - AEs

- With instabilities, 'classical' EP predictions (e.g. for NB heating, current drive) can fail
- > Predictive tools are being developed, validated for integrated modeling of these effects in present and future devices (ITER, Fusion Nuclear Science Facility – FNSF)

- NSTX discharges with strong MHD are used to test and validate EP transport models
- Modeling methods beyond 'classical' EP physics are developed to account for MHD effects
- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution

Outline

- NSTX discharges with strong MHD are used to test and validate EP transport models
- Modeling methods beyond 'classical' EP physics are developed to account for MHD effects
- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution

Alfvénic modes (AEs) and kink-like modes degrade fast ion confinement, plasma performance

- NSTX discharges with strong MHD are used to test and validate EP transport models
- Modeling methods beyond 'classical' EP physics are developed to account for MHD effects
- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution

Transport code TRANSP includes NUBEAM module for classical fast ion physics

- Additionally, *ad-hoc* diffusivity *D_{fi}* is used to mimic enhanced fast ion transport
 - Assumed uniform in radius, pitch, energy in this work
- Metric to set D_{fi} : match neutron rate, W_{mhd}

However: instabilities introduce fundamental constraints on particle dynamics

From Hamiltonian formulation – single resonance:

$$\omega P_{\zeta} - nE = const. \implies \Delta P_{\zeta} / \Delta E = n/\omega$$

 $\omega = 2\pi f$, mode frequency *n*, toroidal mode number

However: instabilities introduce fundamental constraints on particle dynamics

From Hamiltonian formulation – single resonance:

 $\omega P_{\zeta} - nE = const. \implies \Delta P_{\zeta} / \Delta E = n/\omega$

 $\omega = 2\pi f$, mode frequency *n*, toroidal mode number

These effects are not accounted for by ad-hoc D_{fi}. A new method is needed to include them in integrated modeling.

Constants of motion (E,P_{ζ},μ) are the natural variables to describe wave-particle interaction

NSTX-U

Particle-following codes are used to extract distribution of 'kicks' ΔE , ΔP_{z} for each *bin* (E,P_z, μ)

🔘 NSTX-U

25th IAEA-FEC – MHD effects on NB current drive, M. Podestà (Oct. 17th, 2014)

New 'kick model' uses a *probability distribution function* for particle transport in (E,P_ζ,μ) space

🔘 NSTX-U

$p(\Delta E, \Delta P_{\xi}|P_{\xi}, E, \mu)$ and a time-dependent 'mode amplitude scaling factor' enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ from particlefollowing code ORBIT
- Each type of mode has separate $p(\Delta E, \Delta P_{\zeta}), A_{mode}(t)$
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ > TAEs: large ΔE , ΔP_{ζ} > kinks: small ΔE , large ΔP_{c}

$p(\Delta E, \Delta P_{\xi}|P_{\xi}, E, \mu)$ and a time-dependent 'mode amplitude scaling factor' enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ from particlefollowing code ORBIT
- Each type of mode has separate $p(\Delta E, \Delta P_{\zeta}), A_{mode}(t)$
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ
 > TAEs: large ΔE, ΔP_ζ
 > kinks: small ΔE, large ΔP_ζ

$p(\Delta E, \Delta P_{\xi}|P_{\xi}, E, \mu)$ and a time-dependent 'mode amplitude scaling factor' enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- $p(\Delta E, \Delta P_{\xi} | P_{\xi}, E, \mu)$ from particlefollowing code ORBIT
- Each type of mode has separate $p(\Delta E, \Delta P_{\zeta}), A_{mode}(t)$
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ > TAEs: large ΔE , ΔP_{r}
 - > kinks: small ΔE , large ΔP_{ζ}

Outline

- NSTX discharges with strong MHD are used to test and validate EP transport models
- Modeling methods beyond 'classical' EP physics are developed to account for MHD effects
- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution

Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink-like mode (multi-mode scenario)

Simulated neutron rate agrees with experiments for both TAE avalanches & multi-mode cases

🔘 NSTX-U

25th IAEA-FEC – MHD effects on NB current drive, M. Podestà (Oct. 17th, 2014)

Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink-like mode (multi-mode scenario)

TAE avalanches cause an abrupt drop in fast ions and up to ~40% reduction in local NB-driven current density

- Results from 'kick model'
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction: $\Delta P_{\zeta}/\Delta E = n/\omega$
- NB-driven current J_{nb} is also redistributed out
- J_{nb}(r) modification largely unpredicted by ad-hoc D_{fi} in this case

TAE avalanches cause an abrupt drop in fast ions and up to ~40% reduction in local NB-driven current density

- Results from 'kick model'
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction:

 $\Delta P_{\zeta}/\Delta E = n/\omega$

• NB-driven current *J*_{nb} is also redistributed out

 J_{nb}(r) modification largely unpredicted by ad-hoc D_{fi} in this case

TAE avalanches cause an abrupt drop in fast ions and up to ~40% reduction in local NB-driven current density

- Results from 'kick model'
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction:

 $\Delta P_{\zeta}/\Delta E = n/\omega$

- NB-driven current J_{nb} is also redistributed out
- J_{nb}(r) modification largely unpredicted by ad-hoc D_{fi} in this case

Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink-like mode (multi-mode scenario)

Synergy between different classes of instabilities modifies MHD effects on $J_{nb}(r)$ – not captured by ad-hoc D_{fi}

Synergy between different classes of instabilities modifies MHD effects on $J_{nb}(r)$ – not captured by $ad-hoc D_{fi}$

Phase-space is *selectively* modified by instabilities: TAEs $-> \Delta P_{\zeta}/\Delta E = n/\omega$, kinks -> mostly ΔP_{ζ}

🔘 NSTX-U

25th IAEA-FEC – MHD effects on NB current drive, M. Podestà (Oct. 17th, 2014)

Summary

- NB-driven current profile can be strongly affected by MHD instabilities
 - Not all effects properly captured by classical EP physics
- A new model is implemented in TRANSP for EP simulations including phase-space details

- Validation within TRANSP framework is in progress

- New tools will improve scenario development on NSTX Upgrade & future devices
 - NB current drive optimization
 - NB-driven current profile control for high-q_{min} steady state operations

Backup slides

'Kick' model exploits separation of typical time scales between instabilities and collisional processes

- 3 time scales characterize particle motion in the presence of instabilities:
 - $1/f_{wave} \sim 10$'s μ s
 - $-\tau_{\text{resonance}} > 10 \times \tau_{\text{transit}} > 100's \ \mu s$
 - $\tau_{collisions}$, $\tau_{slowdown}$ >>> 1 ms
- Relevant time scale for *secular* $\Delta E, \Delta P_{c}$ by waves is $\tau_{resonance}$
- Classical mechanisms already included in IM codes (TRANSP)

- E.g. collisions, slowing down, atomic physics

Summary comparison of some reduced models used for EP transport

		ad-hoc D _{fi}	CGM model (*)	kick' model
physics-based		no	yes	yes
		$D(\alpha t)$	growth/damping	probability,
required input		D _{fi} (p,t)	rates	mode amplitude
applicability				
				AEs, kinks,
		indirectly	multiple AEs	NTMs.
	multi-mode			Fishbones/EPMs?
	steady-state	yes	yes	yes
	transients	yes	only for $\tau > \tau_{relax}$	yes
phase-space selectivity		modest	no	yes
		roquiros	requires mode	requires mode
		guess D _{fi}	spectrum:	spectrum,
predictive runs			growth/damping	amplitude
		nono plannad	extend to 2D in	remove μ
improvements			velocity space	conservation

(*) CGM – <u>Critical Gradient Model</u>

see Gorelenkov TH/P1-2, Heidbrink EX/10-1

Scaling factor A_{mode}(t) is obtained from measurements, or from other observables such as neutron rate + modeling

– If no mode data directly available, A_{mode} can be estimated based on other measured quantities

Example: use measured neutron rate

- -Compute ideal modes through NOVA
- Rescale relative amplitudes from NOVA according to reflectometers
- Rescale total amplitude based on computed neutron drop from ORBIT
- -Scan mode amplitude w.r.t. experimental one, *A_{mode}=1*: get table
- Build A_{mode}(t) from neutrons vs. time,
 table look-up

Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

