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Introduction / Motivation 

ITER baseline scenario, aims: 
•  Q~10, producing 500MW of fusion power for 300-500s. 
Baseline scenario (BL):  

15MA/5.3T, q95=3, ne/nGW=fGW=0.85, H98=1, βN~1.8, high δ	



•  Working or operation point defined on machines with Carbon wall 

•  Scenario demonstration at devices with metallic wall like AUG-W 
(Alcator C-Mod and JET-ILW) in view of ITER is required 

•  Matching parameters for demonstration on AUG are: q95, fGW, H98, 
βN (or Pheat/PL-H), δ and hence NOT ν*, ρ* 
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ITER baseline scenario on ASDEX Upgrade (AUG-W) 

•  Ramp-up in low δ configuration 
•  Stationary discharges as long as enough gas puff and central heating 

1.1 MA / 1.8T w. X3 ECRH 1.2 MA / 2.0T w. ICRH 
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Confinement in ITER BL scenario at AUG 
(black = AUG-C, low & high δ, coloured = AUG-W, high δ only) 

•  Existence diagrams for H98y2 vs. fGW (left) and H98y2 vs. βN (right)  
•  Rising triangularity improves confinement at higher n/nGW 

•  At low Pheat (βN ≤ 1.8) confinement H98y2 ≤  0.85 in AUG-W 
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Ip [MA] 

WMHD [MJ] 

Hα  

•  although significant D2  
puff, low fELM = 13 Hz 

•  WELM up to 200kJ or 
25% of WMHD  

Major issue: ELM behaviour 

IR Thermography: 
•  high heat flux on outer 

target plate during ELM 
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ELM mitigation attempts done using: 
 
•  pellets for ELM pacing 
•  nitrogen seeding  
•  magnetic perturbation (MP) fields 

Mitigation of ELMs in the ITER BL scenario 
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ELM frequency not always 
elevated by pellets: 
•  ELM not reliably triggered 
•  ELM size still very large 
•  ELM duration decreased 

(though ’loss tail’ still 
present) 

ELM pacing w. pellets in ITER BL scenario in AUG-W 

Next step: in combination 
with N-seeding the trigger 
probablity should go up 
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Attempt of ELM pacing,  
with pellets + N-seeding 

   
•  N-puff slowly ramped up 

(t>3.6s)  max. level 8!1021 e-/s 
•  70 Hz Pellets from 4s with 

reduced D-puff level	



•  ΔWELM smaller with N  

•  Pellets increase fELM 
 
•  cW increase with pellet onset 

•  Pellets drive discharge 
towards density limit fGW -> 1  

 
-> scenario not stationary yet 

cW 
N-seeding starts 
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Attempt at (R)MP mitigation in ITER Baseline 
(MP-coils active in the shaded area) 
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•  ITER BL, MP mitigation not 
achieved, although fGW ~1  

•  low q95 reduces collisionality 

ELM mitigation at high density using 
n=2, MPs: 

•  threshold of pedestal top density (or 
collisionality) has to be exceeded 

Successful ELM mitigation at lower Ip 
and BL shape (δ), but q95=5.5  

ITER BL  q95=3.0  
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Demonstration of ITER BL scenario at AUG difficult 

Achieved: 
•  Operation at q95=3 demonstrated at H98=1, βN > 2, fGW ~0.85 
 
BUT: 
•  Large ELMs (also observed at JET both JET-C & JET-ILW) - 

integration of ELM mitigation not achieved until now 
•  At relevant Pheat (~1.3 PL-H) confinement H98 ≤ 0.85 
 

 q95 = 3 seems to be a difficult corner in the 
operational space -> 

try to find alternative operational point for Q=10 
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Proposal: Operation could move to higher q95 (lower Ip) 

Alternative operation point for Q = 10, keeping Pfus and G constant  

for q95 = 3.6:  βN ~ 2.2, H98 = 1.2     (ITER Ip ~ 12 MA) 

For scaling (at similar density), keeping Pfus and G constant: 
(Peeters et al., Nucl. Fusion 47 (2007) 1341–1345) 
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•  Implications for required target density: 
•  pedestal ne as high as possible (for exhaust) 

•  higher ne0 / <ne> (w. pellets) to reach fGW ~ 1 
•  Keep high triangularity to reach simultaneously good confinement at 

high fGW 
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Comparison q95 = 3 to q95=3.6 at same Pheat 
(Pheat chosen to get βN ~1.8 for q95 = 3 case)   

βN ~1.8  
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Comparison q95 = 3 to q95=3.6 at same Pheat 
(Pheat chosen to get βN ~1.8 for q95 = 3 case)   

•  same Pheat leads to same WMHD 
•  Pheat 30% above PL->H 
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Comparison q95 = 3 to q95=3.6 at same Pheat 
(Pheat chosen to get βN ~1.8 for q95 = 3 case)   

•  q95= 3.6 scenario allows lower 
gas puff rate 

•  H98y2 > 1 
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Comparison q95 = 3 to q95=3.6 at same Pheat 
(Pheat chosen to get βN ~1.8 for q95 = 3 case)   

•  ELM signature similar in both 
scenarios 

 

•  Phase with MP reduces 
confinement, but does not 
affect ELMs 
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Comparison q95 = 3 to q95=3.6 at same Pheat 
(Pheat chosen to get βN ~1.8 for q95 = 3 case)   

•  Same WMHD confirmed 
by kinetic profiles 

•  Same fGW, less 
absolute ne in q95=3.6 
case 

•  Edge ne rather similar 

Conclusion: 
Promising performance 
of ‚alternative ITER BL‘, 
but ELM behaviour 
unchanged. 
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‚Alternative ITER BL‘ plasmas (q95=3.6) 
 with and without type-II ELMs 

•  Closeness to DN configuration 
(parameter dRXP) decisive for 
switch to type-II ELMs 
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‚Alternative ITER BL‘ plasmas (q95=3.6) 
 with and without type-II ELMs 

•  Parameter dRXP changes 
energy confinement 
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‚Alternative ITER BL‘ plasmas (q95=3.6) 
 Nitrogen seeding in phase with type-II ELMs 

Nitrogen seeding recovers energy 
confinement transiently and leads 
to W accumulation 
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•  MHD behaviour similar as for the type-II 
ELMs observed in the past at q95=5.5 

•  Profiles show no significant change in 
edge gradient 

•  Type-II ELM pedestal has slightly lower 
Te,ped and higher ne,ped 

Shape changes 
are very small: 
•  Type-I ELMs 
•  Type-II ELMs 

Type-II ELMs observed in ‚alternative ITER BL‘ 
plasmas (q95=3.6) – typical signature as in the past 

Existence of type-II ELMs 
extended to q95 = 3.6 in AUG 
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•  Operational range (gas puff level, wall conditions) considerably larger 
than in q95=3 scenario, less prone to W-accumulation 

•  First results for ‘alternative’ ITER BL (target: H98y2=1.2, βN=2.2, fGW>0.9) 
promising, but confinement off target by 10% 

•  Cold divertor operation by N-seeding not yet stationary 
 

Summary q95=3.6 ‚alternative BL‘ demonstration  
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Summary  

•  q95 = 3 ITER BL: 
•  With 3.8 MW NBI + 1.8 MW ICRH discharge at βN=1.8 

established, but H98 below 1. 

•   q95 = 3.6 ‘alternative ITER BL’: 
•  At low Pheat promising performance achieved 
•  Extended operational window compared to q95=3 
•  Type-II ELMs rediscovered 

For both scenarios:  
•  ELM mitigation techniques still need to be integrated  
•  Operation with ‘cold divertor’ (by N-seeding) in both 

scenarios not stationary so far. Attempts with higher 
puff rates for D and N on the agenda for next 
experiments 
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Operation in Helium compared with Deuterium 
•  0.8 MA /1.4 T, Both discharges performed ~20 days after boronization 
•  Deuterium reference discharge suffers from W-accumulation 

Helium discharge shows stable W behaviour 

Helium Deuterium 
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Operation in Helium compared with Deuterium 

•  He plasma has same ne, Te (and likely same Ti, not measured) as D 
plasma, with 1.5 less particles (both discharges at 0.8 MA /1.4 T) 

•  This is consistent with global stored energy 
(WMHD in D ~ 1.5 WMHD in He) 

Helium 

Deuterium 

Density ne 

Helium 

Deuterium 

Temperature Te 
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Summary: Helium operation 

•  A few discharges were performed with the following 
technical boundary conditions: 

•  Helium not pumped by AUG cryo-pumps 
•  He-NBI not possible -> D2-NBI used in all 

discharges 
•  Discharges were performed under almost un-

boronized wall conditions 

•  Low current He operation (0.8 MA) even without 
central wave heating 


