

Development of the Q=10 Scenario for ITER on ASDEX Upgrade (AUG)

Josef Schweinzer¹,

M. Beurskens², E. Joffrin³, C. Angioni¹, V. Bobkov¹, M. Dunne¹, R. Dux¹, R. Fischer¹, C. Fuchs¹, A. Kallenbach¹, C. Hopf¹, F. Laggner⁴, P.T. Lang¹, M. Maraschek¹, A. Mlynek¹, Th. Pütterich¹, F. Ryter¹, J. Stober¹, W. Suttrop¹, G. Tardini¹, E. Wolfrum¹, H. Zohm¹ and the ASDEX Upgrade team

¹ Max Planck Institute for Plasma Physics, 85748 Garching, Germany
² CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
³ CEA, Centre de Cadarache, 13108 Saint Paul-lez-Durance, France
⁴ Institute of Applied Physics, Vienna University of Technology, Austria

25th IAEA Fusion Energy Conference (FEC 2014) St. Petersburg, Russia, 13-18 October 2014

Introduction / Motivation

ITER baseline scenario, aims:

Q~10, producing 500MW of fusion power for 300-500s.
Baseline scenario (BL):

15MA/5.3T, q₉₅=3, n_e/n_{GW}=f_{GW}=0.85, H₉₈=1, β_N ~1.8, high δ

- Working or operation point defined on machines with Carbon wall
- Scenario demonstration at devices with metallic wall like AUG-W (Alcator C-Mod and JET-ILW) in view of ITER is required
- Matching parameters for demonstration on AUG are: q_{95} , f_{GW} , H_{98} , β_N (or P_{heat}/P_{L-H}), δ and hence NOT v^* , ρ^*

ITER baseline scenario on ASDEX Upgrade (AUG-W)

- Ramp-up in low δ configuration
- Stationary discharges as long as **enough gas puff** and **central heating**

- Existence diagrams for H_{98y2} vs. f_{GW} (left) and H_{98y2} vs. β_N (right)
- Rising triangularity improves confinement at higher n/n_{GW}
- At low P_{heat} ($\beta_N \le 1.8$) confinement $H_{98y2} \le 0.85$ in AUG-W

Major issue: ELM behaviour

ELM mitigation attempts done using:

- pellets for ELM pacing
- nitrogen seeding
- magnetic perturbation (MP) fields

FEC 2014, St. Petersburg, Russia, 17 Oct. 2014

7

ELM pacing w. pellets in ITER BL scenario in AUG-W

ELM frequency not always elevated by pellets:

- ELM not reliably triggered
- ELM size still very large
- ELM duration decreased (though 'loss tail' still present)

Next step: in combination with N-seeding the trigger probablity should go up

Attempt at (R)MP mitigation in ITER Baseline

(MP-coils active in the shaded area)

- ITER BL, MP mitigation not achieved, although f_{GW} ~1
- low q₉₅ reduces collisionality

ELM mitigation at high density using n=2, MPs:

threshold of pedestal top density (or collisionality) has to be exceeded

Achieved:

• Operation at $q_{95}=3$ demonstrated at $H_{98}=1$, $\beta_N > 2$, $f_{GW} \sim 0.85$

BUT:

- Large ELMs (also observed at JET both JET-C & JET-ILW) integration of ELM mitigation not achieved until now
- At relevant P_{heat} (~1.3 P_{L-H}) confinement $H_{98} \leq 0.85$

q₉₅ = 3 seems to be a difficult corner in the operational space -> try to find alternative operational point for Q=10

Proposal: Operation could move to higher q_{95} (lower I_p)

For scaling (at similar density), **keeping** P_{fus} and G constant: (Peeters et al., Nucl. Fusion 47 (2007) 1341–1345)

 $P_{fus} = 2.77 \left(\frac{\beta_N}{q_{95}}\right)^2$ Fusion power normalized to the ITER value G

$$G = \frac{Q}{Q+5} = 10.8 \frac{H_{98}^3}{\beta_N q_{95}^2}$$

Alternative operation point for Q = 10, keeping P_{fus} and G constant

for $q_{95} = 3.6$: $\beta_N \sim 2.2$, $H_{98} = 1.2$ (ITER I_p ~ 12 MA)

- Implications for required target density:
 - pedestal n_e as high as possible (for exhaust)
 - higher $n_{e0} / \langle n_e \rangle$ (w. pellets) to reach $f_{GW} \sim 1$
- Keep high triangularity to reach simultaneously good confinement at high $\rm f_{GW}$

FEC 2014, St. Petersburg, Russia, 17 Oct. 2014

J. Schweinzer

Comparison $q_{95} = 3$ to $q_{95}=3.6$ at same P_{heat} (P_{heat} chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)

- Same W_{MHD} confirmed by kinetic profiles
- Same f_{GW}, less absolute n_e in q₉₅=3.6 case

• Edge n_e rather similar

p_e [kPa]

Conclusion: Promising performance of ,alternative ITER BL⁴, but **ELM behaviour unchanged**.

FEC 2014, St. Petersburg, Russia, 17 Oct. 2014

J. Schweinzer

Type-II ELMs observed in ,alternative ITER BL' plasmas (q_{95} =3.6) – typical signature as in the past

Summary q₉₅=3.6 ,alternative BL' demonstration

- Operational range (gas puff level, wall conditions) considerably larger than in q₉₅=3 scenario, less prone to W-accumulation
- First results for 'alternative' ITER BL (target: H_{98y2}=1.2, β_N=2.2, f_{GW}>0.9) promising, but confinement off target by 10%
- Cold divertor operation by N-seeding not yet stationary

- q₉₅ = 3 ITER BL:
 - With 3.8 MW NBI + 1.8 MW ICRH discharge at β_N =1.8 established, but H₉₈ below 1.
- **q**₉₅ = 3.6 'alternative ITER BL':
 - At low P_{heat} promising performance achieved
 - Extended operational window compared to q₉₅=3
 - Type-II ELMs rediscovered

For both scenarios:

- ELM mitigation techniques still need to be integrated
- Operation with 'cold divertor' (by N-seeding) in both scenarios not stationary so far. Attempts with higher puff rates for D and N on the agenda for next experiments

Operation in Helium compared with Deuterium

- **0.8 MA /1.4 T**, Both discharges performed ~20 days after boronization
- Deuterium reference discharge suffers from W-accumulation

FEC 2014, St. Petersburg, Russia, 17 Oct. 2014

pp

Operation in Helium compared with Deuterium

- He plasma has same n_e, T_e (and likely same T_i, not measured) as D plasma, with 1.5 less particles (both discharges at 0.8 MA /1.4 T)
- This is consistent with global stored energy (W_{MHD} in D ~ 1.5 W_{MHD} in He)

Summary: Helium operation

- Helium not pumped by AUG cryo-pumps
- He-NBI not possible -> D₂-NBI used in all discharges
- Discharges were performed under almost unboronized wall conditions
- Low current He operation (0.8 MA) even without central wave heating