Helical modes induced by localized current perturbations in sawtoothing KSTAR plasmas

G.S. Yun¹, G. Choe¹, A. Bierwage², Y. Nam¹, M.J. Choi¹, W. Lee³, H.K. Park³, Y.S. Bae⁴, S.W. Yoon⁴, C.W.Domier⁵, N.C. Luhmann, Jr.⁵, and KSTAR team

¹ Pohang University of Science and Technology, Pohang 790-784, Korea

² Japan Atomic Energy Agency, Rokkasho-mura, Kamikita, Aomori 039-3212, Japan

³ Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea

⁴ National Fusion Research Institute, Daejeon 169-148, Korea

⁵ University of California, Davis, CA 95616, USA

E-mail contact of main author: gunsu@postech.ac.kr

Detailed 2D and quasi-3D images of sawtoothing plasmas with localized ECH have been obtained on the KSTAR tokamak, revealing the existence of multiple flux tubes (MFTs) of helicity h=m/n=1/1 and their complex dynamics: growth of MFTs, their coalescence into a single flux tube, and subsequent crash [1]. A systematic scan of the localized ECH deposition position showed a strong correlation between the number of flux tubes and the deposition position [2].

Theoretical investigations on possible generation mechanisms for MFTs in our experimental condition suggest that the localized ECH can induce the formation of h=1 flux tubes only if the q profile is nearly flat and close to 1 in the core region. Subsequently, a numerical scheme with an empirical source model for localized current using a reduced set of MHD equations has been developed [3]. A good agreement with the observation was found only for the simulations with flat q=1 profile, confirming the validity of the theoretical speculation.

(a)

15 10 5 Z (cm) 0 -5

> -10 -15

(b)

Example (#9214, t=5.00s) Triple \rightarrow Dual \rightarrow single tube

160 170 180 R (cm)

 $2010 \tau_{A}$

simulation result.

+2.8 ms

Figure 1 Dual flux tubes aligned along m/n=1/1 field line. Boxed are the observed images.

References:

- [1] G.S. Yun et al., Phys. Rev. Lett. 109,145003 (2012)
- [2] G.H. Choe et al., submitted to Nucl. Fusion [3] A. Bierwage et al., submitted to Nucl. Fusion
- Z/a 0.2 r/a-0.2

3390 τ_A

+3.0 ms

5920 τ_A

 $\delta T_a / \langle T_a \rangle$