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Anomalous Flattening of Fast ion 
Profile on DIII-D

• Anomalous flattening of the fast-ion profile during 
Alfvén-eigenmode activity

• A rich spectrum of TAEs and RSAEs with reversed q profile 
in current ramp-up phase 2

[W. W. Heidbrink, PRL 99, 245002 (2007)]



Theoretical studies 
related to the DIII-D experiments

• Alfvén eigenmodes
– An excellent agreement in δTe profile between NOVA prediction and 

ECE measurement [Van Zeeland (2009)]
– Shearing of 2D AE profile was compared with TAEFL code [Tobias 

(2011)]
– EP nonperturbative effects on TAE profile and freq. [Wang (2013)]
– Validation of GK codes on transition from RSAE to TAE [Spong (2012)]

• EP transport
– Multiple low amplitude modes (dB/B~10^-4) can account for 

significant modification of fast ion distributions [White (2010)]
– Modeling of fast ion losses and stability of AE modes [Van Zeeland 

(2011, 2012)] 

• Nonlinear simulations [Vlad (2009), Y. Chen (2013)]
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We try a first comprehensive simulation of 
AE amplitude and EP transport !

• AE stability and amplitude depend on EP distribution 
• EP transport depends on AE amplitude
• AEs and EP distribution should be solved in a self-

consistent way. Difficulty arises from a gap between 
time scales: 
– slowing down time ~ 0.1-1 s, AE period ~ 10^-5 s
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Life of an energetic particle: 
idea of multi-phase simulation

• in the slowing down process, energetic particle resonates 
with multiple AEs

• resonance regions have finite width (Δv) in velocity space
• interaction with AEs can be simulated at intervals shorter 

than τs*Δv/v
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Multi-phase Simulation
[Y. Todo, Nucl. Fusion 54, 104012 (2014)]

• Hybrid simulation of energetic particles and an MHD 
fluid

• Multi-phase simulation =
– classical simulation w/o MHD perturbations for 4ms    +  
– EP-MHD hybrid simulation for 1ms;  performed alternately
– reduce  computational time to 1/5 6

Classical Hybrid Classical Hybrid ・・・・・・

Classical Hybrid・・・・・・ Classical Hybrid

4ms 1ms 4ms 1ms

4ms 1ms 4ms >1ms, until a steady 
state appears



Objectives

• Multi-phase simulation of a DIII-D experiment 
(#142111) and validation on   
– anomalous flattening of fast ion profile
– electron temperature fluctuation: frequency, 

spatial profile, and amplitude
• Analysis of fast ion transport process in the 

simulation result
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An extended MHD model coupled with 
energetic particles
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Frequency spectrum evolution in the 
experiment at t~525ms #142111

• AEs with n=1-5 are observed. 
• In the simulation, energetic particle drive is restricted to n=1-

5 to reduce numerical noise. 9

[M. A. Van Zeeland, 
NF 52, 094023 (2012)]



Setup of simulation

• DIII-D discharge #142111 at t=525ms is investigated using an 
equilibrium data reconstructed with EFIT code.

• Realistic beam ion deposition profile (full, half, and third energy 
components) is given by TRANSP code.

• Collisions (slowing down, pitch angle scattering, energy 
diffusion) with realistic parameters are taken into account. 

• Particle losses take place at the plasma boundary 
(r/a=1).

• 8 million particles are injected with constant time intervals in 
150ms.

• Beam injection power is 6.25MW. 
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Time evolution of stored fast ion energy 
and MHD kinetic energy

• Multi phase simulation: classical phase is run w/o MHD for 
4ms and then hybrid phase is run with MHD for 1ms. This 
combination is repeated until stored fast ion energy is 
saturated at t=70ms. 

• After t=70ms, the MHD fluctuation reaches to a steady level.
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Comparison of fast ion pressure profiles 
(classical, multi-phase, exp.)

• Fast ion pressure profile flattening takes place 
in the multi phase simulation. 

• The fast pressure profile in the multi-phase 
simulation is close to that in the experiment. 12



Fast ion distribution in velocity space
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Comparison among 
classical phase durations
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• two classical phase durations 
(4ms and 9ms) are compared

• very good agreement in fast ion 
pressure profile (top right)

• similar MHD fluctuation level (bottom)



Bulk temperature fluctuation spectra 
at r/a=0.49 at t≥70ms

• Comparison in frequency (sim., exp.): n=1 (62kHz, 68kHz), n=3 
(69kHz, 74kHz), n=4 (73kHz, 79kHz), n=5 (77kHz, 84kHz)

• n=2 mode is missing at the simulated moment in experiment 15

n=1 n=2 n=3

n=4 n=5



δTe Spatial Profiles 
in multi-phase simulation

16n=3,  f=69kHz n=4,  f=73kHz n=5,  f=77kHz



Comparison of temperature fluctuation profile 
with ECE measurement for n=3

• good agreement in spatial profile (left)
• good agreement in amplitude within a factor of 2 (left)
• good agreement in phase profile (right)
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Comparison of temperature fluctuation profiles 
with ECE measurement for n=4 and 5

• good agreement in spatial profile (left)
• good agreement in amplitude within 20% (left)
• good agreement (n=4) and reasonable agreement (n=5) in 

phase profile (right) 18
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Evolution of fast ion energy flux 
brought about by AEs
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n=2

n=3

n=4

• steady and intermittent flux 
• avalanches with multiple modes
• consistent with resonance overlap 

(Berk & Breizman 1995) 



Summary

• First comprehensive simulation that predicts 
– nonlinear saturated amplitude of AEs 
– and fast ion pressure profile consistent with measured 

values in experiment
• Temperature fluctuation profiles brought about by three of 

TAEs in the simulation are compared with experiment. 
– good agreement in radial profiles of amplitude and phase
– good agreement in absolute amplitude within a factor of 2

• Steady and intermittent fast ion energy flux with avalanches
• The multi-phase simulation is useful for the prediction of AE 

activity and EP transport in burning plasmas
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