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Anomalous Flattening of Fast ion

Profile on DIII-D
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Anomalous flattening of the fast-ion profile during
Alfvén-eigenmode activity

A rich spectrum of TAEs and RSAEs with reversed g
profile in current ramp-up phase



Theoretical studies
related to the DIII-D experiments

e Alfvén eigenmodes

— An excellent agreement in 6Te profile between NOVA prediction (TAE
mode) and ECE measurement [Van Zeeland (2009)]

— Shearing of 2D AE profile was compared with TAEFL code [Tobias
(2011)]

— EP nonperturbative effects on TAE profile and freq. [Wang (2013)]
— Validation of GK codes on transition from RSAE to TAE [Spong (2012)]

* EP transport

— Multiple low amplitude modes (dB/B~10”-4) can account for
significant modification of fast ion distributions [White (2010)]

— Modeling of fast ion losses and stability of AE modes [Van Zeeland
(2011, 2012)]

* Nonlinear simulations [Vlad (2009), Y. Chen (2013)]



No studies have ever tried a comprehensive
simulation of AE amplitude and EP transport |

— Alfvén
Particles m Eigenmodes

AE stability and amplitude depend on EP distribution
EP transport depends on AE amplitude

AEs and EP distribution should be solved in a self-
consistent way. Difficulty arises from a gap between
time scales:

— slowing down time ~ 0.1-1 s, AE period ~ 107-5 s




Life of an energetic particle:
idea of multi-phase simulation
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in the slowing down process, energetic particle resonates
with multiple AEs

resonance regions have finite width (Av) in velocity space
interaction with AEs can be simulated at intervals shorter
than t.*Av/v



Multi-phase Simulation

[Y. Todo, Nucl. Fusion 54, 104012 (2014)]
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------ Classical Hybrid Classical Hybrid
4ms 1ms 4ms >1ms, until a steady

state appears

Hybrid simulation of energetic particles and an MHD
fluid

Multi-phase simulation =

— classical simulation w/o MHD perturbations for 4ms +

— EP-MHD hybrid simulation for 1ms; performed alternately
— reduce computational time to 1/5 .



Objectives

* Multi-phase simulation of a DIlI-D experiment
(#142111) and validation on

—anomalous flattening of fast ion profile

—electron temperature fluctuation:
frequency, spatial profile, and amplitude

* Analysis of fast ion transport process in the
simulation result



An extended MHD model coupled with
energetic particles
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Frequency spectrum evolution in the
experiment at t~525ms #142111
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AEs with n=1-5 are observed.

In the simulation, energetic particle drive is restricted to
n=1-5 to reduce numerical noise. °



Setup of simulation

DIII-D discharge #142111 at t=525ms is investigated using an
equilibrium data reconstructed with EFIT code.

Realistic beam ion deposition profile (full, half, and third energy
components) is given by TRANSP code.

Collisions (slowing down, pitch angle scattering, energy
diffusion) with realistic parameters are taken into account.

Particle losses take place at the plasma boundary

(r/a=1).

8 million particles are injected with constant time intervals in
150ms.

Beam injection power is 6.25MW.



Time evolution of stored fast ion energy
and MHD kinetic energy
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Multi phase simulation: classical phase is run w/o MHD for
4ms and then hybrid phase is run with MHD for 1ms. This
combination is repeated until stored fast ion energy is
saturated at t=70ms.

After t=70ms, the MHD fluctuation reaches to a steady level.

11



Comparison of fast ion pressure profiles
(classical, multi-phase, exp.)
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* Fast ion pressure profile flattening takes place
in the multi phase simulation.

* The fast pressure profile in the multi-phase
simulation is close to that in the experiment.



Fast ion distribution in velocity space
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Comparison among
classical phase durations

Stored Fast lon Energy [a.u.]

MHD Kinetic Energy [a.u.]
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two classical phase durations

(4ms and 9ms) are compared

very good agreement in fast ion

pressure profile (top right)
similar MHD fluctuation level (bottom)



Bulk temperature fluctuation spectra
at r/a=0.49 at t>70ms
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 Comparison in frequency (sim., exp.): n=1 (62kHz, 68kHz), n=3
(69kHz, 74kHz), n=4 (73kHz, 79kHz), n=5 (77kHz, 84kHz)

* n=2 mode is missing at the simulated moment in experiment



odTe Spatial Profiles
in multi-phase simulation
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Comparison of temperature fluctuation profile
with ECE measurement for n=3
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good agreement in spatial profile (left)
good agreement in amplitude within a factor of 2 (left)

good agreement in phase profile (right)
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Comparison of temperature fluctuation profiles
with ECE measurement for n=4 and 5
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e good agreement in spatial profile (left)
* good agreement in amplitude within 20% (left)

 good agreement (n=4) and reasonable agreement (n=5) in
phase profile (right) 18



Time evolution of

fast ion energy flux profile
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e steady and intermittent flux
e avalanches with multiple modes

n=2

n=3

n=4
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Summary

First comprehensive simulation that predicts
— nonlinear saturated amplitude of AEs

— and fast ion pressure profile consistent with measured
values in experiment

Temperature fluctuation profiles brought about by three of
TAEs in the simulation are compared with experiment.

— good agreement in radial profiles of amplitude and phase
— good agreement in absolute amplitude within a factor of 2
Steady and intermittent fast ion energy flux with avalanches

The multi-phase simulation is useful for the prediction of AE
activity and EP transport in burning plasmas



