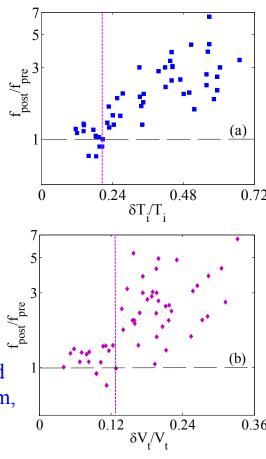

Role of the ion temperature and toroidal rotation during the ELM mitigation by SMBI HL-2A


SWIP

• Ion temperature (T_i) and toroidal rotation (V_t) is measured by a high time and spatial resolution CXRS;

• T_i decreases by around half and one third at the pedestal top and at the pedestal bottom, respectively;

The temperature gradient decreases by more than one third;

The pedestal width is diminished by about one third.

 f_{post} and f_{pre} mean the ELM frequency post and before the SMBI, respectively; To successfully increase the ELM frequency, about 20% and 13% of relative $\overline{0.72}$ decrements of T_i and V_t should be achieved; The increment of ELM frequency is more sensitive to $\delta V_t / V_t$ rather than $\delta T_i / T_i$. SMBI deposition in the pedestal decreases the ion temperature and rotation, $\overline{0.36}$ and this may be the main effect on the radial electric field.