

EX/3-3: Pedestal Confinement and Stability in JETHL ELMy H-modes CF Maggi

Max Planck Institut für Plasmaphysik, Garching, 25th IAEA FEC Conference, St Petersburg, Russia

S. Saarelma¹, M. Beurskens¹, C. Challis¹, I. Chapman¹, E. de la Luna², J. Flanagan¹, L. Frassinetti³, C. Giroud¹, J. Hobirk⁴, E. Joffrin⁵, M. Leyland⁶, P. Lomas¹, C. Lowry⁷, G. Maddison¹, J. Mailloux¹, I. Nunes⁸, F. Rimini¹, J. Simpson¹, A.C.C. Sips⁷, H. Urano⁹ and JET Contributors^{*}

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

¹CCFE, Culham Science Centre, Abingdon OX14 3DB, UK
²Asociacion CIEMAT, Madrid, Spain
³Association VR, Fusion Plasma Physics, KTH, SE-10044 Stockholm, Sweden
⁴Max Planck Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
⁵CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
⁶York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK
⁷European Commission, B1049 Brussels, Belgium
⁸Associação IST, Instituto Superior Técnico, Av Rovisco Pais, 1049-001 Lisbon, Portugal
⁹Japan Atomic Energy Agency, 801-1 Muko-yama, Naka, Ibaraki 311-0193, Japan

*See the Appendix of F. Romanelli et al., Proc. 25th IAEA FEC 2014, St Petersburg, Russian Federation

Confinement reduction in pedestal

In JET-ILW, H-mode operation needs to be compatible with W control

- Lower T_{e,PED} in initial phase of JET-ILW at all densities
- → Confinement loss is dominantly in pedestal
- N₂ seeding in high δ H-modes allows recovery of T_{e,PED} to values approaching JET-C

[Beurskens, PPCF 2013] [Giroud, Nucl. Fusion 2013]

Similar p_{PED} at low and high δ in JET-ILW at low β_N (~ 1.2)

25th IAEA FEC Conference, St Petersburg

Outline

Experiments in 2013-2014 with the JET-ILW have investigated the pedestal confinement and stability with respect to:

- Triangularity
- Beta
- Neutrals (D and low-Z impurities)

Triangularity

- Lower $T_{e,PED} \rightarrow Higher v_{PED}^* \rightarrow Iower$ bootstrap current
- → plasma shaping barely affects the achievable pedestal height
- Similar p_{PED} at low and high δ

Triangularity alone does not recover pedestal height

25th IAEA FEC Conference, St Petersburg

Pedestal pressure and beta

- Increasing power/beta increases p_{PED} both at low and high δ
- At low beta similar pedestal pressures
- At high $\delta,$ stronger increase in p_{PED} with power at constant density

Challis, EX/9-3

EFFE Pedestal stability consistent with P-B

 Increasing core pressure stabilises ballooning modes due to Shafranov shift, which raises P-B boundary

Power scans at higher gas rates

Higher D₂ gas rate, typical of JET-ILW steady H-modes

- Lower β_N at higher D_2 gas rate
- Type I ELMs
- Lower p_{PED} at larger gas rate

 $(P_{sep} = P_{heat} - P_{rad.bulk})$

Peeling-Ballooning stability

- At low gas rates, pedestals are at P-B boundary
- At high gas rates, pedestals are stable to P-B modes at higher beta
- All type I ELMy H-modes

Weaker increase of pedestal pressure with power at <u>high D_2 gas rates</u> is not consistent with peeling-ballooning model

EFFE Varying the plasma neutral content

Neutral D content increases when

- D_2 injection rate is increased \leftarrow W control tool
- Divertor configuration is varied from C/C or V/H → C/V (pumping efficiency + neutrals recirculation to main chamber)

Pedestal pressure and neutrals

- C/C: good pumping + lower neutral content $\rightarrow n_{e,PED} \Psi$, $T_{e\&i,PED} \uparrow$
- C/V: good pumping + higher neutral content $\rightarrow n_{e,PED} \Psi$, low $T_{e\&i,PED}$

In C/C, $H_{98} \sim 1$ and $\beta_N \sim 1.8$ at 2.5MA

CF Maggi 12/17

25th IAEA FEC Conference, St Petersburg

15 October 2014

C/C

V/H C/V

1.2

\therefore EFJET In C/C, H₉₈ ~ 1 and β_N ~ 1.8 at 2.5MA

3.8

3.8

3.8

$V/H \rightarrow C/C$

Increase of W_{th} at similar p_{PED} but lower collisionality

 $V/H \rightarrow C/V$ Low pedestal and core pressure

[Frassinetti, EPS 2014]

CF Maggi 13/17

25th IAEA FEC Conference, St Petersburg

$\underbrace{ \ \ } EFper \ \ At high \delta N_2 seeding increases T_{e,PED}$

- Increase of $T_{e,ped}$ is independent of divertor configuration
- Effect on density depends on divertor configuration
- Increase of $T_{e,PED}$ with N_2 is weaker at low δ
- The underlying physics process is not yet understood

Giroud, EX/P5-25

2.5MA/2.7T, High Triangularity, V/H Configuration

- With increasing D₂ rate, pressure gradient decreases and width increases at constant β_{pol}
- With increasing N₂, temperature pedestal widens and peak density gradient increases
- At high gas rates, challenge for KBM based EPED model

[Leyland, Nucl. Fusion, accepted]

Conclusions

- The changeover from JET-C to JET-ILW has forced us to re-optimize pedestal confinement and stability
- What we understand within the P-B framework and EPED model:
 - Stabilizing effects of beta and plasma shaping at low D₂ gas rates
- What we still need to understand in order to advance our predictive capability of the pedestal height:
 - Physics process through which D neutrals degrade T_{e,PED} (inter-ELM transport?...)
 - Physics process through which N_2 impurities increase $T_{e,PED}$

Back-up slides

CF Maggi 17/17

25th IAEA FEC Conference, St Petersburg

15 October 2014

P-B stability analysis

Distance of operational point to P-B boundary is length of arrow, calculated at fixed pedestal width and increasing $T_{e,PED}$

Gyrokinetic analysis of the pedestal

Local flux tube simulation (GS2) indicates that JET pedestal is stable to KBMs due to high bootstrap current

[Saarelma, Nucl. Fusion 2013]

Pedestal prediction

- EPED predicts fully developed pedestal before an ELM at crossing of KBM and P-B stability limits
- EPED has predicted the pedestal height in several devices within ± 20%

[Snyder et al., NF 2009] [Snyder et al., NF 2011]

High-n ballooning:

 Inclusion of higher toroidal mode numbers reduces the critical pressure gradient at which ballooning modes become unstable, changing the stability boundary

Diamagnetic stabilization:

• BOUT++ simulations indicate that $\gamma > \omega^*_{max}/2$ at low *n* and $\gamma > C * \omega_A$ at high *n* is more appropriate

CF Maggi 21/17

15 October 2014