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First Direct Evidence of Turbulence-Driven Main Ion Flow  

Triggering the L-H Transition 
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•  Investigate L-H transitions at marginal  

     heating power: 
        - expanded transition timescale 

        - can exhibit limit cycle oscillations (LCO) 

     
•   Er, E⤬B shear periodically modulated;  

      edge turbulence periodically quenched: 

      

 

  
 
  

 

• LCO can reveal the detailed turbulence- 

     flow interaction and trigger physics 
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Predicting the L-H Transition Power Threshold in ITER                  

Requires a Physics-based L-H Transition Model 
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•  New: Evidence that turbulence-driven ion flow 
     triggers the L-Mode – LCO transition 

 

•  Causality: Turbulence-driven flow quenches turbulence initially; 

     pressure gradient-driven flow locks in H-mode confinement 
 
•  New: A modified predator-prey model captures essential         

     LCO physics  

 

•  New: L-mode seed flow shear at L-mode – LCO transition 

     has a density dependence similar to the L-H power threshold 

Outline / Summary 
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Backscattering off density      
fluctuations with  

ks = ki +     ,          = -2ki 

Several Effects localize back-     

scattering to the cut-off layer        

 E⤬B velocity from Doppler shift: 

          Doppler =  vturb   
 

 vturb: Turbulence advection 

  
Here, vph << vExB  

          vExB~   Doppler/2ki 

Doppler Backscattering (DBS) Measures Local Density        

Fluctuation Level and Turbulence Advection Velocity 
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X-mode cutoff-layer       =          c,x  

ki 

 

ks 

    ,ki 

Launch     
angle  
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Density fluctuations and E×B velocity 
measured by DBS with high spatial/   
temporal resolution 

 

Radial mapping using density profiles      
from fast Profile Reflectometry (25   s) 

 

Main ion poloidal/toroidal flow via CER 
measurements  

 

E×B flow shearing rate calculated from    
neighboring DBS channels: 

Time Evolution and Radial LCO Structure via Multi-channel      

Doppler Backscattering and Main Ion CER 

DBS/Main Ion CER probing locations 

LCFS 

Poloidal/Tor. CER Chords 

5 
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Outline 

Evidence of Turbulence-driven Ion Flow; 

Meso-scale Dipolar Flow Structure 



Time Evolution and Radial Mapping of LCO Structure via Multi-

channel Doppler Backscattering 
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Time Evolution and Radial LCO Structure via Multi-channel     

Doppler Backscattering 

Schmitz et al,  

PRL 108, 2012 

Outer Shear 

Layer 

 

Inner Shear   

Layer 
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• L-Mode: Weak ExB shear layer 

turbulence peaks at/outside 

the separatrix 

 

• LCO phase: Periodic ExB flow 

and turbulence suppression 

(starting at separatrix) 

 

• H-mode: Wider and deeper 

shear layer; turbulence 

suppression maintained     

across the edge  
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Time Evolution and Radial LCO Structure via Multi-channel     

Doppler Backscattering 

Schmitz et al,  

PRL 108, 2012 

Outer Shear 

Layer 

 

Inner Shear   

Layer 
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• L-Mode: Weak ExB shear layer 

turbulence peaks at/outside 

the separatrix 

 

• LCO phase: Periodic ExB flow 

and turbulence suppression 

(starting at separatrix) 

 

• H-mode: Wider and deeper 

shear layer; turbulence 

suppression maintained     

across the edge  
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6 
How is the LCO Triggered? Obtain Turbulence-Driven Ion Flow   

from the Radial Ion Force Balance 

 
 

E×B velocity measured via DBS 
 

v×B term evaluated from  
radial momentum balance  

(subtracting        term)  

from DBS     from profile  

                     reflectometer/CER 

 

 

9 

Ñpi
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How is the LCO Triggered? Evidence for Turbulence-Driven vixB 

Flow in the Ion Diamagnetic Direction 

 

 
 

Positive transient in vixB  

(ion diamagnetic direction) 

inside the LCFS at the initial 

turbulence quench 

 

Turbulence suppressed 

within ~ 100 

 

from DBS     from profile  

                     reflectometer/CER 

Radial ion momentum balance: 



11 L. Schmitz/IAEA2014 11 

Meso-scale Shear Triggers Initial Turbulence Quench 

 

Peak negative ExB flow does not coincide 

with time of maximum shear (across outer  

shear layer) 

  

Local meso-scale ExB shear reversal  

initiates first turbulence quench: 
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ExB Shear Across Outer Layer Increases Periodically  

Preceding Turbulence Suppression 
 

Peak negative ExB flow does not coincide 

with time of maximum shear (across outer 

shear layer) 

  

Local meso-scale ExB shear reversal  

initiates first turbulence quench: 

ExB Shear across outer layer increases; 

quenches turbulence periodically    

during successive LCO cycles 
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Turbulence Drives Main Ion Poloidal Flow 

•Main ion flow (measured 

via main ion CER) lags ñ 
 
• Phase delay of      (~90º)         

is qualitatively consistent  

    with ion flow acceleration  

    via Reynolds stress            : 

     

     

 

• BES velocimetry confirms 

(positive) Reynolds stress 

    gradient in outer layer 

 

 

 

 

 He Plasma: Cross-Correlation  

                 of ñ and   
tD~0.15 ms  

 
vqvr

Measured early in the LCO (t0+1.5 ms) 

 

¶ vq

¶t
= -

¶ vqvr

¶r
- m vq
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Poloidal Flow is the Main Contribution to the vExB Oscillation                 

Early in the LCO  

Phase-lock analysis: 
 

Triangular CER  

waveforms due to  

limited CER time  

resolution 
 

 

             is the dominant  

contribution to vExB 

early in the LCO  
 

 
 

 

Outer Shear Layer 

t0+4ms 
14 

       = 0.27 ms 

ID
D
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BES Shows Formation of Large Scale Eddies and Eddy Tilting/  

Break-up in High Shear Regions 

• Large eddies grow      

   at expense of smaller 

   eddies 
 

 

•Break-up/turbulence 

   reduction after large  

   eddies tilt 

 

•E×B flow reversal near  
   LCFS: IDD turbulence- 

   driven flow at LCFS; 

   EDD turbulence-driven 

   flow further inboard 
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Outline 

16 

 

 

Causality of shear flow generation  
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Final Transition to H-mode is due to Increasing Pressure-Gradient 
Driven Shear; Modulation/Increase of ∇n (∇pi)   

17 

 
• ∇n is used as proxy for ∇pi               

as Ln < 0.3LTi  

 

• Density gradient only changes 

significantly well into the LCO 

 

• Gradual increase and periodic 
modulation of ∇n during LCO 

 
• Increasing ∇p slows down LCO 

frequency (increasing shear 

inhibits turbulence recovery) 
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•Expanded time scale: 

∇n (∇p) increase after each 
fluctuation quench 

Final Transition to H-mode is due to Increasing Pressure-Gradient 
Driven Shear; Modulation/Increase of ∇n,∇pi  
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Early in the LCO,  
∇pi lags               : 

 

E×B Shear is not caused 
by the pressure gradient 
 

Later in the LCO,  
∇pi leads          :  
 

Pressure-gradient driven 

shear is dominant 

Causality of Shear Flow Generation: Turbulence-Driven Flow     

Shear Dominates Early in the LCO  

19 

Correlation delay  
Between          and ∇pi  

∇pi leads 

∇pi lags 
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Outline 

20 

 

 

A modified Predator-prey Model 
Captures Essential LCO Physics 
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•Total ExB flow includes pressure-gradient-driven equilibrium flow 

•Pressure gradient is modulated via the periodic change in          

  turbulence level and transport: two interacting feedback cycles 

Gradient Drive 

Damping 

     ( ii) 

ZF Inhibition  

Two Coupled Feedback Cycles: Synergy of Turbulence-Driven     

Flow and Pressure-Gradient-Driven Flow  

21 

 

 

Pressure 
Gradient 
(Predator II) 
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Predator-Prey Model Reproduces Important 

Experimental LCO Features and Scalings 

Total ExB flow (includes      , vDia, and turbulence-      

driven flow): (Er,ñ) phasing shifts from 90º closer                

to 0º as diamagnetic shear becomes dominant 

*based on 

Miki, Diamond,  

PoP 2012 

0-D Predator-Prey 

Modeling results*,  

including: 
 

-neoclassical 

poloidal ion 

velocity (no 

toroidal flow) 
 

-shearing by 

turbulence-driven 
and ∇p driven 

E⤬B flow 
 

-pressure profile 

evolution (radial  

transport) 

22 

Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and ∇p-Driven (vDia) Flow 
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Predator-Prey Model Reproduces Important 

Experimental LCO Features and Scalings 

Total ExB flow (includes      , vDia, and turbulence-      

driven flow): (Er,ñ) phasing shifts from 90º closer                

to 0º as diamagnetic shear becomes dominant 

*based on 

Miki, Diamond,  

PoP 2012 

0-D Predator-Prey 

Modeling results*,  

including: 
 

-neoclassical 

poloidal ion 

velocity (no 

toroidal flow) 
 

-shearing by 

turbulence-driven 
and ∇p driven 

E⤬B flow 
 

-pressure profile 

evolution (radial  

transport) 
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Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and ∇p-Driven (vDia) Flow 
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Predator-prey Model Qualitatively Reproduces the Measured  

Phase Shift between ñ and vExB  

Early LCO 

(t0+ 1.5ms): 

 

Experiment: 

       ~70-90º 

 

model: 

       ~50-70º 

Late LCO 

(tH-1.5ms): 

 

Experiment: 

        ~20-30º 

 

model: 

        ~10-20º 

Quantitative differences due to variations of                    
Zonal- and mean turbulence-driven ion flow 
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Outline 

E×B and v×B seed flow shear at the  
L-mode-LCO Transition 
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Importance of Seed Flow Shear: L-Mode E×B and v×B Flow Shear 
(and Pth) Increase at Low and High Density 

• Reynolds work PRe depends on  

   Reynolds stress and seed shear flow: 

 

 

 

 
• Total E⤬B shearing rate  and  

   v⤬B shear show a minimum at  

   intermediate density (similar to Pth)    
 

• L-mode diamagnetic seed 

   flow shearing rate        does                        

   not reflect the Pth
 density  

   dependence 

 

 

 

 

 

•   

26 
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•  Strong evidence that turbulence-driven ion flow triggers LCO;       

evidence of dipolar meso-scale flow structure 

•  Causality of shear flow generation: Pressure-gradient-driven shear 

increases only well after the initial fluctuation quench, and locks in             

the final transition to H-mode 

•   0-D /1-D predator-prey models captures synergy of turbulence-driven     

and pressure-gradient driven flow and reproduces essential       

experimental LCO properties 

•  Connection to power threshold: Both total E×B shear and v×B velocity 
shear increase at very low and at high plasma density (qualitatively     

similar to Pth scaling) 

Conclusions/Physical Picture 

27 



28 28 L. Schmitz/IAEA2014 

Positive Flow Transients in Outer Shear Layer Suppress ñ 

 

 

• E×B Shearing rates  
 peak in the outer shear 

layer where turbulence  

 level is high 

 

• Positive flow transients 

suppress turbulence 
   

 
 

Outer 

Outer 

Inner 

Inner 

LCFS 

LCFS 

t0 

28 

vExB 

ñ/n 
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Negative Flow Transients Occur after Turbulence Suppression   

 

 

•Negative E×B transients 
reflect turbulent-driven 

flow early in the LCO 

 

• Pressure-gradient-

driven flow only 

changes significantly 

well into the LCO 

 
    

 

 
 

Outer 

Outer 

Inner 

Inner 

LCFS 

LCFS 

t0 

29 

vExB 

ñ/n 
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0-D Predator-Prey 

modeling results*,  

including: 
 

-neoclassical 

poloidal ion 

velocity (no 

toroidal flow) 
 

-shearing by 

turbulence-driven 

and mean flows 
 

-pressure profile 

evolution 

-radial transport 

Turbulence-drivenZonal flow vZF lags 
density fluctuation level ñ by 90º 

Equilibrium flow is out of phase (180º) with ñ 

(both consistent with observed limit cycle phasing) 

Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and ∇p-driven (vDia) Flow  
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0-D Predator-Prey 

modeling results*,  

including: 

 

-neoclassical 

poloidal ion 

velocity (no 

toroidal flow) 
 

-shearing by 

turbulence-driven 

and mean flows 
 

-pressure profile 

evolution 

-radial transport 

Turbulence-driven flow vZF lags ñ by 90º (qualitatively 

consistent with experiment           
 

Poloidal Ion Flow lags ñ by 10-30º 

consistent with observed limit cycle phasing) 

Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and    p-Driven (vDia) Flow  
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0-D Predator-Prey 

modeling results*,  

including: 

 

-neoclassical 

poloidal ion 

velocity (no 

toroidal flow) 
 

-shearing by 

turbulence-driven 

and mean flows 
 

-pressure profile 

evolution 

-radial transport 

Turbulence-driven flow vZF lags 

density fluctuation level ñ by 90º 

(consistent with observed limit 

cycle phasing) 

Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and    p-Driven (vDia) Flow  

32 
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• Positive transients  

    in inner shear layer    

    delayed;  
 

• Consistent with radial 

inward propagation of    

LCO E×B flow* 
 

• Mesoscale radial  

    structure: 

     i < LExB < Lp 

Outer 

Outer 

Inner 

Inner 

LCFS 

LCFS 

t0   *L. Schmitz et al., 

    PRL 2012 33 

vExB 

ñ/n 

Flow Layer Propagates Radially Inwards  
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Limit Cycle Directions (ñ,vExB Phase Relation) 

are Consistent with Meso-scale Turbulence-Driven Flow 

Opposite Limit cycle directions are 

observed in outer/inner shear layer 
 

ñ,vExB phase relationship  

is consistent with observed  

radial E×B flow propagation 
 

                                  *L. Schmitz et al., 
                                    PRL 2012 

 

CCW 

CW 

Limit Cycle-Outer Shear Layer 

Limit Cycle-Inner Shear Layer 

Cross Correlation of ñ and vE×B 

H-mode H-mode 

L-Mode 

H-mode 
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Predator-Prey Model Predicts LCO with Opposing  

Turbulence-Driven and ∇p-Driven (vDia) Flow  
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Evidence of Turbulence-Driven Poloidal Ion Flow       

from Main Ion CER and DBS  

Main ion flow v  lags the 

density fluctuation level ñ 

 

E×B velocity approximately 
in phase with v :  

Driven Poloidal ion flow is 

main contribution to vE×B 

 He Plasma: Cross-Correlation  

                 of ñ and v   

Poloidal flow acceleration 

via turbulence-generated  

Reynolds stress            :  
vqvr

Measured early in the LCO 
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How Does the LCO Start? Compelling Evidence for Turbulence-

Driven Ion Flow from Main Ion CER and DBS  

 
 

Poloidal main ion flow v  (blue, 

green) lags the density 

fluctuation level ñ 

 

The E×B flow is in phase  
with vθ (expected if the  

Er modulation results  

from vθ) 

 

Less clear correlation of ñ with 

toroidal velocity vφ in the early 

LCO  

R=Rs-0.8 cm 

 He Plasma: Cross-Correlation  

          of ñ and vE×B with vθ  

He plasma; Ion flow   

from main Ion CER; 

vExB and ñ from DBS 
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Toroidal Flow Modulation is Out of Phase with  

ExB Velocity in Outer Shear Layer   

Toroidal velocity is  

positive (co-current); 

increases locally 

towards LCFS 

(orbit-loss effect?) 

 
Shown is the electric 

field component due 

to v  

 

Weak toroidal  

velocity modulation 

observed in Inner  

Shear Layer 

Outer Shear Layer 

Inner Shear Layer 
t0+4ms 

38 
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Miki-Diamond Model* (1-D, coupled with radial transport model) 

*Miki and Diamond,  
  PoP 2012) 

Mean Shear Flow 
 

 

Mean poloidal flow 

(Reynolds stress + 

neoclassical flow) 

Predator-Prey Equations (1-D), Pressure Gradient (1-D)  

+ Transport Model*,  

Turbulence Evolution 
 
 

Turbulence-driven shear 

flow energy 

 
Pressure gradient evolution 
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Motivation 

•  The presently used empirical L-H power threshold scaling  
    does not reflect important parameters, or the observed  
            non-monotonic dependency of Pth on density: 

 

 

 

•  Predicting the L-H transition power threshold in ITER requires              

     a physics-based L-H transition model: 

 
  - Link trigger physics/microscopic flow/turbulence dynamics                

    to the macroscopic power threshold scaling 

  - Extract critical seed shear flow/ critical turbulence-driven              

    shear flow and determine their role in the Pth scaling 
 
 

              

(2008 multi-machine scaling) Pth(MW) =0.049BΦ
0.8ne

0.72S0.94 
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Meso-Scale Dipole Structure of Turbulence-Driven Flow:     

Alternating Transients in Outer / Inner Shear Layer 

Outer Shear  

Layer    
Inner Shear  

Layer 

E×B Shearing rates  
peak in the  

outer shear layer 

(pos. flow: 

magenta arrows) 

where turbulence  

level is high 

 

Radial profile   

consistent with 

radial inward 

propagation of  

LCO E×B flow* 

  *L. Schmitz et al., 
    PRL 2012 41 


