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* The natural type-I ELMs frequency in ITER is predicted to be too low to avoid either
W accumulation at low |, or damage to PFCs at high I
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« The natural type-I ELMs frequency in ITER is predicted to be too low to avoid either
W accumulation at low |, or damage to PFCs at high I

* One technique that has been shown to reduce the size of ELMs is the application of
Resonant Magnetic Perturbations (RMPSs)

* Need to understand how RMPs control ELMs to make predictions for ITER — a good
way of doing this is by making in depth comparison across devices
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« The natural type-1 ELMs frequency in ITER is predicted to be too low to avoid either
W accumulation at low |, or damage to PFCs at high I

* One technique that has been shown to reduce the size of ELMs is the application of
Resonant Magnetic Perturbations (RMPSs)

* Need to understand how RMPs control ELMs to make predictions for ITER — a good
way of doing this is by making in depth comparison across devices
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MAST is equipped with
- 6 coils in the upper row
- 12 coils in the lower row

Can produce configurations

n=1,2,3,40r6

AUG is equipped with
- 2 rows of 8 coils each

Can produce configurations

n=1,2or4
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ELM mitigation has been
achieved with ngy,s=1, 2 and n=4
magnetic perturbations

Sustained ELM mitigation
demonstrated with ng,,,=2 and 4

RMPs cause a density
pump out and braking of
toroidal rotation

W Suttrop EX/P1-23
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ELM mitigation decreases:
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Minimising the effect of the RMPs
on confinement
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Application of n=6 RMPs to LSND
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Application of n=6 RMPs to LSND
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Application of n=6 RMPs to LSND

30378 no RMP
30270 n=6 RMP

The density and temperature
profiles show that not only
_ has the core density been

' recovered but also the edge
N 3 density
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The ELM averaged line

average density and stored
energy are similar

EETENE So mitigation achieved with
e : little effect on stored energy
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Natural ELM cycle — pressure pedestal
evolves to a maximum value
determined by the Peeling Ballooning
modes stability boundary just before
ELM crash
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Infinite n ballooning stability
calculated using COBRA from

a VMEC equilibrium

C Ham et al., “Tokamak equilibria and edge
stability when non-axisymmetric fields are
applied ‘ submitted to PPCF
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Application of RMPs leads to 3D
distortions of plasma shape

-> produces regions of enhanced
ballooning mode instability — reducing the
PB boundary and hence triggering type |
ELMs at lower P4
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Application of RM

Ps leads to 3D

distortions of plasma shape
-> produces regions of enhanced

ballooning mode i
PB boundary and

nstability — reducing the
hence triggering type |

ELMs at lower P4
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So how can P4 stay the same
and yet f,,, increases?

A. Kirk 251 IAEA FEC, St Petersburg, Russia, October 2014

Application of RMPs leads to 3D
distortions of plasma shape

-> produces regions of enhanced
ballooning mode instability — reducing the
PB boundary and hence triggering type |

ELMs at lower P4
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If the pedestal evolved to a saturated
value early in the ELM cycle
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Then could increase f,, at almost
constant P



constant P
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For these shots on MAST P_Ped spends a

large amount of times near to a saturated 02}

value during the ELM cycle and the
mitigated ELMs are triggered near to the
point at which the maximum is obtained

A. Kirk 251 IAEA FEC, St Petersburg, Russia, October 2014

Then could increase f,, at almost

e RMP Off
o n=6 RMP

|

10 15 20
Atg (ms)



Then could increase f,, at almost
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constant P

Then could increase f,, at almost
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The ELM affected area is

much smaller for the
mitigated ELMs




Parameters determining the
onset of ELM mitigation
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Normalised resonant radial field component (b',.¢) in the vacuum approximation
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On AUG ELM mitigation scales ~ linearly with b’ above a threshold value

which is scenario and ng,,r dependent
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On AUG ELM mitigation scales ~ linearly with b’ above a threshold value

which is scenario and ng,,r dependent
BUT there are some clear outliers
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Included plasma effects using MARS-F, which is a single fluid linear MHD code that

solves the full resistive MHD equations in full toroidal geometry

— the code allows for plasma response and screening due to toroidal rotation to be

taken into account

Clear screening of
resonant
components

b’ NOW similar for
90 and 180°
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Included plasma effects using MARS-F, which is a single fluid linear MHD code that

solves the full resistive MHD equations in full toroidal geometry

— the code allows for plasma response and screening due to toroidal rotation to be

taken into account

Plasma response composed of kink (core) and peeling (edge) eigenfunctions

10
8 — Peeling m=6-17
Preliminary results indicate that maximum
ELM mitigation is obtained near to where
the peeling response of the plasma is
maximum

6 Kink m=1-4
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ELM type during mitigation
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Natural and Mitigated ELMs look very similar
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al- . Application of n=3 RMPs to a
particular discharge in MAST
caused a density pump out
which resulted in the
establishment of a small ELM
regime
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4 . Application of n=3 RMPs to a
particular discharge in MAST
caused a density pump out
which resulted in the
establishment of a small ELM
regime — which had a different
mode number
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6 - ' ; Effect of RMPs on
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Without RMPs the naturally occurring
type IV ELMs frequency increases with
decreasing pedestal density
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typically associated with type IV ELMs
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nPed (x10'8 m-3)

Similar to the trend observed on MAST suggesting it
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may be a transition to type IV ELMs



type | ELM suppression
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type | ELM suppression
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type | ELM suppression
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» Sustained ELM mitigation has been obtained at mid to low collisionality on
MAST and AUG using RMPs with a range of toroidal mode numbers resulting in

- smaller ELMs (AW) and reduced peak heat loads (qpeax)
- reduction in density and stored energy

* On MAST in one type of discharge the drop in density has been eliminated resulting
in reduced peak divertor heat flux with minimal drop in confinement — the smaller
ELMs being a result of a change in the region of the plasma affected by the ELM.

» While the size of the resonant magnetic field component plays some role in
determining the onset of ELM mitigation — this cross machine comparison has clearly
indicated the need for studying the effects of the plasma response.

* There appears to be several mechanisms by which ELMs can be mitigated —
increasing the frequency of type | ELMs or a transition to a different ELM regime
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Backup slides
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