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Developing RMP ELM Control for ITER Requires an
Understanding of Plasma Response to 3D Fields

® MHD plasma response models predict islands, stochasticity
and stable kink modes in ELM suppressed H-modes

® Stable RMP driven kinks observed in DIII-D but islands and '“eckngtiemode
stochasticity are not directly observed

® Joint DIlI-D and LHD L-mode experiments have provided sland with
new results on the nonlinear stability of islands during: nested flux

surfaces
" Pellet

- Interactions with plasma generated 6B, field tfriggered by Foblation
stable kink mode | M

- Localized pressure perturbations due to pellets injected into \ -

island O-points a3
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T. Profiles do not Provide Definitive Information on

the Nature of the Plasma Response to RMP Fields
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Flattening of DIII-D T, profiles during RMP
not consistent with vacuum island widths

Wide T, profile flattening across q = 2
surface could result from:

- An amplified m/n =2/1 island
- A partially stochastic m/n =2/1 island

- A fully stochastic layer

Additional diagnostic data needed to
quantify RMP plasma response:

- Modulated Electron Cyclotron (MEC) heat
pulse analysis used to resolve differences
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Modulated EC (MEC) Heat Pulse Analysis Provides

Detailed Information on Magnetic Topology
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MEC Heat Pulse Analysis Developed on LHD to Identify

Magnetic Islands and Stochastic Regions
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®* Peakin heat pulse delay timem) island

® Flat heat pulse delay time m) stochastic

® Transitions from islands to stochastic
layers observed in LHD with changes in
magnetic shear

LHD Overview - OV/2-3
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MEC Heat Pulse Delay Time Used to Determine Island

Location and Width
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* Fast heat pulse shunted around outside of island (, >> y,)
®* Heat pulse delay time increases at island center

® Island width determined from delay time profile
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MEC Heat Pulse Time Delay Determines Degree of

Stochasticity Around Islands
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®* Heat pulse delay time reduced by partially stochastic island
— Nested flux surface in island center increases delay time
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MEC Analysis Reveals Bifurcation of m/n = 2/1

Island from Nested to Partially Sfochashc
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® Periodic bifurcations of island observed during constant RMP field
- nested -> partially stochastic -> nested

- Indicates importance of plasma response on island stability
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Stable n = 1 Kink Mode Due to RMP Field Drives

Large 6B, Plasma Response

OB, plasma response measured at high-field side wall (ISLD1B)
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Proposed Scenario for Island Amplification and

Bifurcation to Partial Stochasticity

L/b J L N i .. p .
‘Scale: 200 kA Vacuum island

Ideal kink mode with nested flux
surfaces

®* RMP field drives stable n=1 kink mode
® Kink mode produces n = 1 3B, plasma field

® 5B, n =1 plasma field couples to vacuum island
® Resulisin larger m/n = 2/1 island width

* m/n = 2/1 island spontaneously bifurcates between
nested and partially stochastic island

D”’-D @ 3D Physics — EX/1-1
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Pressure Driven Instabilities May Cause Bifurcations

of Islands between Nested and Stochastic Structures

® Pellets used on LHD to study pressure driven Island stability
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2.0 Pellet ablation profiles
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LHD flux surfaces
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* Thomson scattering profiles used to quantify island stability and transport
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Edge m/n=1/1 Island Stable to 60 % Increase in

Pressure During Pellet Injection in LHD
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HINT2 Simulations Demonstrate Edge m/n=1/1

Island Structure is Unaltered during Pellet Injection

HINT2 Simulation of LHD m/n = 1/1 island in Shot 122033
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® Bigang l€8s than 2% pressure driven island stability limit
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Edge m/n = 1/1 Magnetic Island Inhibits Inward

Transport of Pellet Particles in LHD

Density evolution during pellets in LHD

® Pellet particles localized to ;
edge region with RMP field :
- Relatively small inward pellet 4
mass redistribution :
pellets
® Without islands pellet mass No magnetic island (without RMP)
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Results and Conclusions

® Joint DIlI-D and LHD experiments have demonstrated that the
plasma response to the RMP field must be included to understanding
the physics of ELM suppression

= In DIII-D plasma response to n=1 RMP field increases island width and
causes spontaneous bifurcations of the internal island topology

- In LHD the topology of an edge island is unaffected by a 60% increase in
B and inward particle fransport is inhibited
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