

Successful ELM Suppressions in a Wide Range of q₉₅ Using Low n RMPs in KSTAR and its Understanding as a Secondary Effect of RMP

YoungMu Jeon¹

J.-K. Park², T.E. Evans³, G.Y. Park¹, Y.-c. Ghim⁴, H.S. Han¹, W.H. Ko¹, Y.U. Nam¹, K.D. Lee¹,

S.G. Lee¹, J.G. Bak¹, S.W. Yoon¹, Y.K. Oh¹, J.G. Kwak¹, and KSTAR team¹

¹ National Fusion Research Institute, Daejeon, Korea
 ² Princeton Plasma Physics Laboratory, Princeton, NJ, US
 ³ General Atomics, San Diego, CA, US
 ⁴ Korea Advanced Institute of Science and Technology, Daejeon, Korea

October 14, 2014 IAEA-FEC, St. Petersburg, Russian Federation

OUTLINE

1. A brief summary of ELM-RMP experiments in KSTAR

 Complete ELM-suppressions by using low n (=1 or 2) RMP fields in a wide range of q₉₅

2. Understanding of ELM-suppression physics mechanism

- Observation as a secondary effect of RMP
- A distinctive transport bifurcation as a key
- ELM-suppression as a new state of H-mode

3. Summary and discussion

Optimal RMP fields by three rows of FEC coils

IAEA-FEC-2014, YMJ

A long (>4.0sec) ELM-suppression achieved by using n=1 RMP (High q₉₅)

- Optimal q₉₅ range=5.2~6.3
 Long suppression (t>4.0sec)
- Up to ~15% confinement degradations: n_e, W_{tot}, β_p etc
- Global decrease of V_{ϕ}

IAEA-FEC-2014, YMJ

In a low q_{95} , ELM-suppression achieved by using n=2 RMPs in a similar way

- Optimal q₉₅ range=3.7~4.1
- Up to ~28% confinement degradations: n_e, W_{tot}, β_p etc
- Take a look at the change of confinements when ELMs suppressed

IAEA-FEC-2014, YMJ

Generic features of RMP-driven ELM-suppressed H-mode discharges in KSTAR

Universal to most of devices

- ELMs can be mitigated or suppressed by properly configuring RMP fields
- ELM changes are dominantly relying on the resonant plasma responses
- Usually some amounts of confinement degradations are accompanied, such as on <n_e>, W_{tot}, β_p etc

Unique in KSTAR

- Interestingly, the change of confinement is depending on not only the applied field strength but also the ELM state
- Several distinctive phenomena associated with ELM-suppression observed such as saturated evolutions of $T_{e,edge}$ and D_{α} , broad-band increase of dB_{θ}/dt, increased spikes on I_{sat}, and so on

ELM-suppression appears as a delayed or secondary effect of RMP

 Note that most of other plasma responses such as density pump-out, rotation changes, and ELMmitigation, are observed as a prompt response

Most of plasma responses, including ELM-mitigation, appear promptly after RMP fields on

Most of plasma responses appear quickly (promptly) after RMP applied

- Density pump-out
- Stored energy drop
- Rotation damping
- ELM-mitigation
- ...

ELM-mitigation is also one of prompt responses

However, ELM-suppression seems to be a delayed response (or a secondary response)

- Various time-delays were found prior to ELM-suppression
 - Varied from 0.1 to >1.0sec
- Typical field penetration or transport time-scales are shorter than these
- This time delay, prior to ELMsuppression, might be universal
 Similar time-delays found in DIII-D plasmas as well

What makes the long time delay before the transition to ELM-suppression phase ?

- Is there something slowly varying quantities?
- Is the edge profile change able to explain it ?
 Looks not clear and not sufficient to explain it

Dominant changes of edge profiles appeared shortly in the initial phase and then settled down quickly

Another small changes on edge profiles were followed once the ELM state changed (suppressed)

IAEA-FEC-2014, YMJ

Another small changes on edge profiles were followed once the ELM state changed (suppressed)

IAEA-FEC-2014, YMJ

Then, what happened prior to ELM suppression ? Is there something abruptly occurred ?

Yes, we found several distinctive phenomena directly associated with ELM-suppression

Several apparent and abrupt changes were found associated with the ELM state change (i.e. suppression)

Typical ELM phenomena shows a periodic, sawteeth-like patterns

- Sawteeh-like T_{e,edge} evolution
- In every ELM crashes, other quantities were spiked
- Note that the magnetic fluctuations usually become quiescent in-between ELM crashes

Unusual saturated evolutions appeared in the transition to the ELM-suppressed state

ELMs suppressed

- Both $T_{e,edge}$ and D_{α} became saturated to an intermediate level abruptly
- At that moment, the ion saturation currents (I_{sat}) and the magnetic fluctuations (dB_θ/dt) were abruptly increased and spiked in broad-band frequencies

Unusual saturated evolutions appeared in the transition to the ELM-suppressed state

ELMs suppressed

• A careful look of I_{sat} and dB_{θ}/dt by considering other saturated evolutions suggests that a persistent, rapidly repeating bursty event is activated in the edge region at the moment thus resulting in the saturation of $T_{e,edge}$ and

 D_{α} .

Occasionally original evolutions resumed when the saturated (or bursty edge) condition was broken

ELMs suppressed

- When the original evolutions resumed,
 - $T_{e,edge}$ starts to increase
 - D_{α} starts to decrease
 - The spikes on I_{sat} and the fluctuation on dB_{θ}/dt are cleaned up
 - Then, finally reaching to the stability limit, resulting in an ELM crash

ELM-suppression can be thought as a stably sustained, bursty edge state

The altered edge transport (bursty edge) leads an unexpected change on global confinements

RMP field strength: "n=2 green" < "n=2 red"

- In ELM-mitigated phases (3.0~6.0sec), the confinement degradation is proportional to the strength of RMP field (similar to other devices)
- However, once ELMs are suppressed (6.0~7.5sec), the confinements are improved in both particle and energy
- Note that two distinctive phases (yellow vs blue boxes) of ELMs exist in a steady state under same RMP fields

Indicating a certain mode transition or transport bifurcation

Changes of global quantities are related to the ELM state as well as applied field strength

* When ELMs were mitigated by n=2 RMPs

- In cases of ELM-suppression, it didn't follow the tendency any more
- i.e. ELM-suppression can give less reductions of global confinement than ELM-mitigation

A distinctive nature of RMP-driven ELM-suppressed KSTAR plasmas

RMP field strength: "n=2 green" < "n=2 red"

- In ELM-mitigated phases (3.0~6.0sec), the confinement degradation is proportional to the strength of RMP field (similar to other devices)
- However, once ELMs are suppressed (6.0~7.5sec), the confinements are improved in both particle and energy
- Note that two distinctive phases (yellow vs blue boxes) of ELMs exist in a steady state under same RMP fields

Indicating a certain mode transition or transport bifurcation

The persistent bursty event may play a key role on the change of confinement as well as the change of ELM state

ELM-suppressed H-mode can be considered as a new state of H-mode ('Bursty H-mode')

- (1) Both ELM-mitigated and suppressed phases can be existed steadily under same RMP fields
- (2) ELM suppression appears as a delayed or secondary effect of RMP
- (3) A certain edge transport bifurcation (via persistent, bursty event) seems to be responsible for the change of ELM state
- (4) Confinement enhancements from both particle and energy are followed by the transport change

Schematic summary of ELM-free Bursty H-mode

Blocking pedestal penetration (saturated T_{e,edge}) can be understood

grow any more

Summary and discussion

- 1. ELM-suppression was successfully demonstrated in a wide range of q₉₅ in KSTAR by utilizing low n RMPs
 - n=1 RMP used for high q_{95} and n=2 for low q_{95}
 - Various interesting phenomena observed commonly without any clear dependency on the toroidal mode of RMP fields
- 2. ELM suppression was observed and understood as a delayed, secondary effect of RMP
 - ELM suppression is clearly distinguished from ELM-mitigation, by a long time delay prior to ELM-suppression
 - Various abrupt phenomena (persistent, rapidly bursty event) that led saturated evolution of edge quantities might play a key role on ELM-suppression
 - The altered edge transport led an (unexpected) improvement of confinement
- 3. ELM-suppression would be worth being considered as a new state of Hmode ('bursty H-mode')

Edge profiles depending on ELM state: n=2 RMP

An apparent change of edge Ti \rightarrow A clear change on pedestal penetration ? Does it show an increase of edge V_b similar as that in DIII-D ??

A distinctive nature of RMP-driven ELM-suppressed KSTAR plasmas (n=1 RMP)

* n=1 RMP

#8969: $I_p=0.47MA B_T=1.8T$ \rightarrow ELM-suppressed by 4.4kAt RMP $\rightarrow q_{95}=5.2\sim5.5$

- Under RMP fields, weaker density pumpout in ELM-suppressed phase than ELMy phase
- Similar change on stored energy (and β)
 Better confinement in ELM-suppressed phase
- Changes of W_{tot} (or β_p) are relatively weak and small

The persistent bursty event occurred in the plasma edge : EM fluctuations come from the plasma edge

Short ELM-suppression under n=2 RMP of 2.4kAt

- Ip=0.75kA, BT=1.65T \rightarrow q₉₅~4.0
- More prone to various MHD activity due to lower q₉₅ and higher β

A 25kHz core (internal kink) MHD activity was not affected by the overlapped uniform broadband EM fluctuations

→EM fluctuation (persistent bursty event) was originated from the plasma edge

The persistent bursty event occurred in the plasma edge : Increased D_{α} emission near the plasma boundary

- Emission from CCD \propto D_{α}
- No clear change on topology at the transition
- Only emission intensity was increased strongly

The persistent bursting event in the plasma edge leads increased neutral recycling near the plasma boundary, thus increasing D_α emission